Microdilution là gì

1. Mayers D.L., Lerner S.A., Ouelette M. vol. 2. Springer Dordrecht Heidelberg; London: 2009. (Antimicrobial Drug Resistance C: Clinical and Epidemiological Aspects). pp. 681–1347. [Google Scholar]

2. Guschin A., Ryzhikh P., Rumyantseva T. Treatment efficacy, treatment failures and selection of macrolide resistance in patients with high load of Mycoplasma genitalium during treatment of male urethritis with Josamycin. BMC Infect. Dis. 2015;15:1–7. [PMC free article] [PubMed] [Google Scholar]

3. Martin I., Sawatzky P., Liu G. Antimicrobial resistance to Neisseria gonorrhoeae in Canada: 2009–2013. Can. Commun. Dis. Rep. 2015;41:40–41. [Google Scholar]

4. Berdy J. Bioactive microbial metabolites. J. Antibiot. 2005;58:1–26. [PubMed] [Google Scholar]

5. Runyoro D.K., Matee M.I., Ngassapa O.D. Screening of Tanzanian medicinal plants for anti-Candida activity. BMC Complement. Altern. Med. 2006;6:11. [PMC free article] [PubMed] [Google Scholar]

6. Mabona U., Viljoen A., Shikanga E. Antimicrobial activity of Southern African medicinal plants with dermatological relevance: from an ethnopharmacological screening approach, to combination studies and the isolation of a bioactive compound. J. Ethnopharmacol. 2013;148:45–55. [PubMed] [Google Scholar]

7. Nazzaro F., Fratianni F., De Martino L. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6:1451–1474. [PMC free article] [PubMed] [Google Scholar]

9. CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2012.

10. CLSI, Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, Approved Guideline. CLSI document M44-A. CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA, 2004.

11. Jorgensen J.H., Ferraro M.J. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 2009;49:1749–1755. [PubMed] [Google Scholar]

12. Caron F. Antimicrobial susceptibility testing : a four facets tool for the clinician. J. Des. Anti-Infect. 2012;14 186-174. [Google Scholar]

13. Nijs A., Cartuyvels R., Mewis A. Comparison and evaluation of Osiris and Sirscan 2000 antimicrobial susceptibility systems in the clinical microbiology laboratory. J. Clin. Microbiol. 2003;41:3627–3630. [PMC free article] [PubMed] [Google Scholar]

14. Kreger B.E., Craven D.E., McCabe W.R. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am. J. Med. 1980;68:344–355. [PubMed] [Google Scholar]

15. Lopez-Oviedo E., Aller A.I., Martín C. Evaluation of disk diffusion method for determining posaconazole susceptibility of filamentous fungi : comparison with CLSI broth microdilution method. Antimicrob. Agents Chemother. 2006;50:1108–1111. [PMC free article] [PubMed] [Google Scholar]

16. Arikan S., Yurdakul P., Hascelik G. Comparison of two methods and three end points in determination of in vitro activity of Micafungin against Aspergillus spp. Antimicrob. Agents Chemother. 2003;47:2640–2643. [PMC free article] [PubMed] [Google Scholar]

17. Arikan S., Paetznick V., Rex J.H. Comparative evaluation of disk diffusion with microdilution assay in susceptibility testing of caspofungin against Aspergillus and Fusarium isolates. Antimicrob. Agents Chemother. 2002;46:3084–3087. [PMC free article] [PubMed] [Google Scholar]

18. CLSI, Method for Antifungal Disk Diffusion Susceptibility Testing of Nondermatophyte Filamentous Fungi, Approved guideline, CLSI document M51-A. Clincal and Laboratory Standards Institute, 950 West Valley Roead, Suite 2500, Wayne, Pennsylvania 19087, USA, 2010.

19. Espinel-Ingroff A., Canton E., Fothergill A. Quality control guidelines for amphotericin B, itraconazole, posaconazole, and Voriconazole disk diffusion susceptibility tests with nonsupplemented Mueller–Hinton Agar (CLSI M51-A document) for nondermatophyte Filamentous Fungi. J. Clin. Microbiol. 2011;49:2568–2571. [PMC free article] [PubMed] [Google Scholar]

20. Fourati-Ben Fguira L., Fotso S., Ben Ameur-Mehdi R. Purification and structure elucidation of antifungal and antibacterial activities of newly isolated Streptomyces sp. strain US80. Res. Microbiol. 2005;156:341–347. [PubMed] [Google Scholar]

21. Konaté K., Mavoungou J.F., Lepengué A.N. Antibacterial activity against β-lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann. Clin. Microbiol. Antimicrob. 2012;11:18. [PMC free article] [PubMed] [Google Scholar]

22. De Billerbeck V.G. Huiles Essentielles et Bactéries Résistantes aux Antibiotiques. Phytotherapie. 2007;5:249–253. [Google Scholar]

23. Das K., Tiwari R.K.S., Shrivastava D.K. Techniques for evaluation of medicinal plant products as antimicrobial agents: current methods and future trends. J. Med. Plants Res. 2010;4:104–111. [Google Scholar]

24. Hausdorfer J., Sompek E., Allerberger F. E-test for susceptibility testing of Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998;2:751–755. [PubMed] [Google Scholar]

25. Baker C.N., Stocker S.A., Culver D.H. Comparison of the E Test to agar dilution, broth microdilution, and agar diffusion susceptibility testing techniques by using a special challenge set of bacteria. J. Clin. Microbiol. 1991;29:533–538. [PMC free article] [PubMed] [Google Scholar]

26. Berghaus L.J., Giguère S., Guldbech K. Comparison of Etest, disk diffusion, and broth macrodilution for in vitro susceptibility testing of Rhodococcus equi. J. Clin. Microbiol. 2015;53:314–318. [PMC free article] [PubMed] [Google Scholar]

27. Gupta P., Khare V., Kumar D. Comparative evaluation of disc diffusion and E-test with broth micro-dilution in susceptibility testing of amphotericin B, voriconazole and caspofungin against clinical Aspergillus isolates. J. Clin. Diagn. Res. 2015;9:2013–2016. [PMC free article] [PubMed] [Google Scholar]

28. White R.L., Burgess D.S., Manduru M. Comparison of three different in vitro methods of detecting synergy : time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996;40:1914–1918. [PMC free article] [PubMed] [Google Scholar]

29. Denes É., Hidri N. Synergie et Antagonisme en Antibiothérapie. Antibiotiques. 2009;11:106–115. [Google Scholar]

30. Gülmez D., Çakar A., Şener B. Comparison of different antimicrobial susceptibility testing methods for Stenotrophomonas maltophilia and results of synergy testing. J. Infect. Chemother. 2010;16:322–328. [PubMed] [Google Scholar]

31. Bassolé I.H.N., Juliani H.R. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17:3989–4006. [PMC free article] [PubMed] [Google Scholar]

32. Magaldi S., Mata-Essayag S., Hartung de Capriles C. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004;8:39–45. [PubMed] [Google Scholar]

33. Valgas C., De Souza S.M., Smânia E.F.A. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007;38:369–380. [Google Scholar]

34. Jiménez-Esquilín A.E., Roane T.M. Antifungal activities of actinomycete strains associated with high-altitude Sagebrush Rhizosphere. J. Ind. Microbiol. Biotechnol. 2005;32:378–381. [PubMed] [Google Scholar]

35. Elleuch L., Shaaban M., Smaoui S. Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Appl. Biochem. Biotechnol. 2010;162:579–593. [PMC free article] [PubMed] [Google Scholar]

36. Lertcanawanichakul M., Sawangnop S. A comparison of two methods used for measuring the antagonistic activity of Bacillus species. Walailak J. Sci. Tech. 2008;5:161–171. [Google Scholar]

37. Ali-Shtayeh M.S., Ghdeib S.I. Abu. Antifungal activity of plant extracts against Dermatophytes. Mycoses. 1999;42:665–672. [PubMed] [Google Scholar]

38. Mukherjee P.K., Raghu K. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mycopathologia. 1997;139:151–155. [PubMed] [Google Scholar]

39. Kumar S.N., Nambisan B., Sundaresan A. Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a Rhabditid Entomopathogenic Nematode. Ann. Microbiol. 2013;64:209–218. [Google Scholar]

40. Goodall R.R., Levi A.A. A microchromatographic method for the detection and approximate determination of the different penicillins in a mixture. Nature. 1946;158:675. [PubMed] [Google Scholar]

41. Fischer R., Lautner H. On the paper chromatographic detection of penicillin preparations. Arch. Pharm. 1961;294:1–7. [PubMed] [Google Scholar]

42. Horváth G., Jámbor N., Végh A. Antimicrobial activity of essential oils: the possibilities of TLC-bioautography. Flavour Fragr. J. 2010;25:178–182. [Google Scholar]

43. Mehrabani M., Kazemi A., Mousavi S.A. Ayatollahi. Evaluation of antifungal activities of Myrtus communis L. by bioautography method. Jundishapur J. Microbiol. 2013;6:1–7. [Google Scholar]

44. Marston A. Thin-layer chromatography with biological detection in phytochemistry. J. Chromatogr. A. 2011;1218:2676–2683. [PubMed] [Google Scholar]

45. Dewanjee S., Gangopadhyay M., Bhattabharya N. Bioautography and its scope in the field of natural product chemistry. J. Pharm. Anal. 2015;5:75–84. [PMC free article] [PubMed] [Google Scholar]

46. Choma I.M., Grzelak E.M. Bioautography detection in thin-layer chromatography. J. Chromatogr. A. 2011;1218:2684–2691. [PubMed] [Google Scholar]

47. Grzelak E.M., Majer-Dziedzic B., Choma I.M. Development of a novel direct bioautography-thin-layer chromatography test: optimization of growth conditions for gram-negative bacteria, Escherichia coli. J. AOAC Int. 2011;94:1567–1572. [PubMed] [Google Scholar]

48. Brantner A.H. Influence of various parameters on the evaluation of antibacterial compounds by the bioautographic TLC assay. Pharm. Pharmacol. Lett. 1997;7:152–154. [Google Scholar]

49. Silva M.T.G., Simas S.M., Batista T.G. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and Physalin B bringing out the importance of assay determination. Mem. Inst. Oswaldo Cruz. 2005;100:779–782. [PubMed] [Google Scholar]

50. Shahat A.A., El-Barouty G., Hassan R.A. Chemical composition and antimicrobial activities of the essential oil from the seeds of Enterolobium contortisiliquum (leguminosae) J. Environ. Sci. Health. B. 2008;43:519–525. [PubMed] [Google Scholar]

51. Suleiman M., McGaw L., Naidoo V. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. Afr. J. Tradit. Complement. Altern. Med. 2010;7:64–78. [PMC free article] [PubMed] [Google Scholar]

52. Homans A., Fuchs A. Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J. Chromatogr. A. 1970;51:327–329. [PubMed] [Google Scholar]

53. Hamburger M.O., Cordell G.A. A direct bioautographic TLC assay for compounds possessing antibacterial activity. J. Nat. Prod. 1987;50:19–22. [PubMed] [Google Scholar]

54. Balouiri M., Bouhdid S., Harki E. Antifungal activity of Bacillus spp. isolated from Calotropis procera AIT. Rhizosphere against Candida albicans. Asian J. Pham. Clin. Res. 2015;8:213–217. [Google Scholar]

55. Pfaller M.A., Sheehan D.J., Rex J.H. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin. Microbiol. Rev. 2004;17:268–280. [PMC free article] [PubMed] [Google Scholar]

56. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI document M07-A9. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2012

57. Al-Bakri A.G., Afifi F.U. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. J. Microbiol. Methods. 2007;68:19–25. [PubMed] [Google Scholar]

58. Liang H., Xing Y., Chen J. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae) BMC Complement. Altern. Med. 2012;12:238. [PMC free article] [PubMed] [Google Scholar]

59. Monteiro M.C., de la Cruz M., Cantizani J. A new approach to drug discovery: high-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin. J. Biomol. Screen. 2012;17:524–529. [PubMed] [Google Scholar]

60. Kuhn D.M., Balkis M., Chandra J. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J. Clin. Microbiol. 2003;41:506–508. [PMC free article] [PubMed] [Google Scholar]

61. Reis R.S., Neves I., Lourenço S.L.S. Comparison of flow cytometric and alamar blue tests with the proportional method for testing susceptibility of Mycobacterium tuberculosis to Rifampin and Isoniazid. J. Clin. Microbiol. 2004;42:2247–2248. [PMC free article] [PubMed] [Google Scholar]

62. Ouedrhiri W., Bouhdid S., Balouiri M. Chemical composition of Citrus aurantium L. Leaves and zest essential oils, their antioxidant, antibacterial single and combined effects. J. Chem. Pharm. Res. 2015;7:78–84. [Google Scholar]

63. Bouhdid S., Abrini J., Zhiri A. Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. J. Appl. Microbiol. 2009;106:1558–1568. [PubMed] [Google Scholar]

64. Castilho A.L., Caleffi-Ferracioli K.R., Canezin P.H. Detection of drug susceptibility in rapidly growing mycobacteria by Resazurin broth microdilution assay. J. Microbiol. Methods. 2015;111:119–121. [PubMed] [Google Scholar]

65. Gehrt A., Peter J., Pizzo P.A. Effect of increasing inoculum sizes of pathogenic filamentous fungi on MICs of antifungal agents by Broth microdilution method. J. Clin. Microbiol. 1995;33:1302–1307. [PMC free article] [PubMed] [Google Scholar]

66. Meletiadis J., Meis J.F.G.M., Mouton J.W. Analysis of growth characteristics of filamentous fungi in different nutrient media. J. Clin. Microbiol. 2001;39:478–484. [PMC free article] [PubMed] [Google Scholar]

67. Gomez-Lopez A., Aberkane A., Petrikkou E. Analysis of the influence of tween concentration, inoculum size, assay medium, and reading time on susceptibility testing of Aspergillus spp. J. Clin. Microbiol. 2005;43:1251–1255. [PMC free article] [PubMed] [Google Scholar]

68. Rodriguez-Tudela J.L., Chryssanthou E., Petrikkou E. Interlaboratory evaluation of hematocytometer method of inoculum preparation for testing antifungal susceptibilities of filamentous fungi. J. Clin. Microbiol. 2003;41:5236–5237. [PMC free article] [PubMed] [Google Scholar]

69. CLSI, Reference Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard, 2nd ed., NCCLS document M27-A2. CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA, 2002.

70. CLSI, Reference Method for Broth Dilution Antifungal Susceptibility Testing Filamentous Fungi, Approved Standard, 2nd ed., CLSI document M38-A2, 950 West Valley Roadn Suite 2500,Wayne, Pennsylvania 19087, USA, 2008.

71. Arikan S. Current status of antifungal susceptibility testing methods. Med. Mycol. 2007;45:569–587. [PubMed] [Google Scholar]

72. Lass-Flörl C., Cuenca-Estrella M., Denning D.W. Antifungal susceptibility testing in Aspergillus spp. according to EUCAST methodology. Med. Mycol. 2006;44:319–325. [Google Scholar]

73. Petrikkou E., Rodri J.L., Gómez A. Inoculum standardization for antifungal susceptibility testing of filamentous fungi pathogenic for humans. J. Clin. Microbiol. 2001;39:1345–1347. [PMC free article] [PubMed] [Google Scholar]

74. Aberkane A., Cuenca-Estrella M., Gomez-Lopez A. Comparative evaluation of two different methods of inoculum preparation for antifungal susceptibility testing of filamentous fungi. J. Antimicrob. Chemother. 2002;50:719–722. [PubMed] [Google Scholar]

75. CLSI, Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Guideline, CLSI document M26-A. Clinical and Laboratory Standards Institute, 950 West Valley Roadn Suite 2500,Wayne, Pennsylvania 19087, USA, 1998.

76. Cantón E., Pemán J., Viudes A. Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species. Diagn. Microbiol. Infect. Dis. 2003;45:203–206. [PubMed] [Google Scholar]

77. Espinel-Ingroff A., Fothergill A., Peter J. Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS collaborative study. J. Clin. Microbiol. 2002;40:3204–3208. [PMC free article] [PubMed] [Google Scholar]

78. Espinel-Ingroff A., Chaturvedi V., Fothergill A. Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study. J. Clin. Microbiol. 2002;40:3776–3781. [PMC free article] [PubMed] [Google Scholar]

79. CLSI, Methods for Antimicrobial Dilution and Disk Susceptibility of Infrequently Isolated or Fastidious Bacteria, Approved Guideline, 2nd. ed., CLSI document M45-A2. Clinical and Laboratory Standards Institute, 950 West Valley Roadn Suite 2500,Wayne, Pennsylvania 19087, USA, 2010.

80. Menon T., Umamaheswari K., Kumarasamy N. Efficacy of fluconazole and itraconazole in the treatment of oral candidiasis in HIV patients. Acta Trop. 2001;80:151–154. [PubMed] [Google Scholar]

81. Imhof A., Balajee S.A., Mar K.A. New methods to assess susceptibilities of Aspergillus isolates to caspofungin. J. Clin. Microbiol. 2003;41:5683–5688. [PMC free article] [PubMed] [Google Scholar]

82. Mock M., Monod M., Baudraz-Rosselet F. Tinea capitis dermatophytes: susceptibility to antifungal drugs tested in vitro and in vivo. Dermatology. 1998;197:361–367. [PubMed] [Google Scholar]

83. Speeleveld E., Gordts B., Van Landuyt H.W. Susceptibility of clinical isolates of Fusarium to antifungal drugs. Mycoses. 1996;39:37–40. [PubMed] [Google Scholar]

84. Clancy C.J., Huang H., Cheng S. Characterizing the effects of caspofungin on Candida albicans, Candida parapsilosis, and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect experiments. Antimicrob. Agents Chemother. 2006;50:2569–2572. [PMC free article] [PubMed] [Google Scholar]

85. Klepser M.E., Ernst E.J., Lewis R.E. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob. Agents Chemother. 1998;42:1207–1212. [PMC free article] [PubMed] [Google Scholar]

86. Crouch S.P., Kozlowski R., Slater K.J. The use of ATP Bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods. 1993;160:81–88. [PubMed] [Google Scholar]

87. Bozorg A., Gates I.D., Sen, Using A. Bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties. J. Microbiol. Methods. 2015;109:84–92. [PubMed] [Google Scholar]

88. Paloque L., Vidal N., Casanova M. A new, rapid and sensitive bioluminescence assay for drug screening on Leishmania. J. Microbiol. Methods. 2013;95:320–323. [PubMed] [Google Scholar]

89. Finger S., Wiegand C., Buschmann H.J. Antibacterial properties of cyclodextrin–antiseptics–complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int. J. Pharm. 2013;452:188–193. [PubMed] [Google Scholar]

90. Andreu N., Fletcher T., Krishnan N. Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. J. Antimicrob. Chemother. 2012;67:404–414. [PMC free article] [PubMed] [Google Scholar]

91. Beckers B., Lang H.R., Schimke D. Evaluation of a bioluminescence assay for rapid antimicrobial susceptibility testing of mycobacteria. Eur. J. Clin. Microbiol. 1985;4:556–561. [PubMed] [Google Scholar]

92. Finger S., Wiegand C., Buschmann H. Antimicrobial properties of cyclodextrin–antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int. J. Pharm. 2012;436:851–856. [PubMed] [Google Scholar]

93. Galiger C., Brock M., Jouvion G. Assessment of efficacy of antifungals against Aspergillus fumigatus : value of real-time bioluminescence imaging. Antimicrob. Agents Chemother. 2013;57:3046–3059. [PMC free article] [PubMed] [Google Scholar]

94. Vojtek L., Dobes P., Buyukguzel E. Bioluminescent assay for evaluating antimicrobial activity in insect haemolymph. Eur. J. Entomol. 2014;111:335–340. [Google Scholar]

95. Paparella A., Taccogna L., Aguzzi I. Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control. 2008;19:1174–1182. [Google Scholar]

96. Ramani R., Chaturvedi V. Flow cytometry antifungal susceptibility testing of pathogenic yeasts other than Candida albicans and comparison with the NCCLS broth microdilution test. Antimicrob. Agents Chemother. 2000;44:2752–2758. [PMC free article] [PubMed] [Google Scholar]

97. Green L.J., Marder P., Mann L.L. LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability. Antimicrob. Agents Chemother. 1999;43:830–835. [PMC free article] [PubMed] [Google Scholar]

98. Green L., Petersen B., Steimel L. Rapid determination of antifungal activity by flow cytometry. J. Clin. Microbiol. 1994;32:1088–1091. [PMC free article] [PubMed] [Google Scholar]

99. Ramani R., Ramani A., Wong S.J. Rapid flow cytometric susceptibility testing of Candida albicans. J. Clin. Microbiol. 1997;35:2320–2324. [PMC free article] [PubMed] [Google Scholar]

100. Yousef A.E., Courtney P.D. Basics of stress adaptation and implications in new-generation foods. In: Yousef A.E., Juneja V.K., editors. Microbial Stress Adaptation and Food Safety. CRC Press; Washington DC: 2003. pp. 2–8. [Google Scholar]

101. Tang Y.W., Stratton C.W. Springer; New York Heidelberg Dordrecht, London: 2013. Advanced Techniques in Diagnostic Microbiology, 2nd ed. pp. 937. [Google Scholar]