Đề bài - bài 1.24 trang 31 sbt hình học 10

\(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} \)\( = \left( {\overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} } \right)\) \( + 3\overrightarrow {GG'} + \left( {\overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} } \right)\)\( = \overrightarrow 0 + 3\overrightarrow {GG'} + \overrightarrow 0 = 3\overrightarrow {GG'} \)

Đề bài

Cho hai tam giác \(ABC\) và \(A'B'C'\). Chứng minh rằng nếu \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow 0 \) thì hai tam giác đó có cùng trọng tâm.

Phương pháp giải - Xem chi tiết

- Gọi \(G\) và \(G'\) lần lượt là trọng tâm của hai tam giác \(ABC\) và \(A'B'C'\).

- Xen điểm thích hợp và chứng minh \(\overrightarrow {GG'} = \overrightarrow 0 \).

Lời giải chi tiết

Gọi \(G\) và \(G'\) lần lượt là trọng tâm của hai tam giác \(ABC\) và \(A'B'C'\). Ta có:

\(\overrightarrow {AA'} = \overrightarrow {AG} + \overrightarrow {GG'} + \overrightarrow {G'A'} \)

\(\overrightarrow {BB'} = \overrightarrow {BG} + \overrightarrow {GG'} + \overrightarrow {G'B'} \)

\(\overrightarrow {CC'} = \overrightarrow {CG} + \overrightarrow {GG'} + \overrightarrow {G'C'} \).

Cộng từng vế của ba đẳng thức trên ta được:

\(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} \)\( = \left( {\overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} } \right)\) \( + 3\overrightarrow {GG'} + \left( {\overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} } \right)\)\( = \overrightarrow 0 + 3\overrightarrow {GG'} + \overrightarrow 0 = 3\overrightarrow {GG'} \)

Do đó, nếu \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow 0 \) thì \(\overrightarrow {GG'} = \overrightarrow 0 \) hay \(G \equiv G'\).

Chú ý: Từ chứng minh trên cũng suy ra rằng nếu hai tam giác \(ABC\) và \(A'B'C'\)có cùng trọng tâm thì \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow 0 \).