Phi của protein là gì

Trong công nghệ thực phẩm, việc nghiên cứu cấu trúc và các tính chất hóa học và vật lý của protein trong thực phẩm là rất cần thiếtđối với tất cả mọi người nói chung và các bạn học sinh sinh viên đang theo học nhóm ngành này nói riêng.

You watching: Cấu trúc protein

Bạn đang xem: Công thức hóa học của protein

Cấu trúc của protein

Khái niệm về protein

Protein là những đại phân tử được cấu tạo theo nguyên tắc đa phân mà các đơn phân là các axit amin. Chúng kết hợp với nhau thành một mạch dài nhờ các liên kết peptide [gọi là chuỗi polypeptide]. Các chuỗi này có thể xoắn cuộn hoặc gấp theo nhiều cách để tạo thành các bậc cấu trúc không gian khác nhau của protein.



Cấu trúc của protein

Cấu trúc của protein

Axit amin Đơn phân tạo nên protein

Protein là một hợp chất đại phân tử được tạo thành từ rất nhiều các đơn phân là các axit amin. Axit amin được cấu tạo bởi ba thành phần: một là nhóm amin [-NH2], hai là nhóm Cacboxyl [-COOH] và cuối cùng là các nguyên tử Cacbon trung tâm đính với một nguyên tử Hydro và nhóm biến đổi R quyết định tính chất của axit amin. Người ta đã phát hiện ra được tất cả 20 axit amin trong thành phần của tất cả các loại protein khác nhau trong cơ thể sống.

Các bậc cấu trúc của protein

Người ta phân biệt biệt ra 4 bậc cấu trúc của Protein:

Cấu trúc bậc một: Các axit amin nối với nhau bởi liên kết peptit hình thành nên chuỗi polypeptide. Đầu mạch polypeptit là nhóm amin của axit amin thứ nhất và cuối cùng là nhóm cacboxyl của axit amin cuối cùng. Cấu trúc bậc một của protein thực chất là trình tự sắp xếp các axit amin trên chuỗi polypeptide. Cấu trúc bậc một của protein có vai trò rất quan trọng vì trình tự các axit amin trên chuổi polypeptide sẽ thể hiện tương tác giữa các phần trong chuỗi polypeptide, từ đó tạo nên hình dạng lập thể của protein và do đó quyết định tính chất cũng như vai trò của protein. Sự sai lệch trong trình tự sắp xếp của các axit amin có thể dẫn đến sự biến đổi cấu trúc và tính chất của protein.

Cấu trúc bậc hai: Là sự sắp xếp đều đặn các chuỗi polypeptide trong không gian. Chuỗi polypeptide thường không ở dạng thẳng mà ở xoắn lại tạo nên cấu trúc xoắn và cấu trúc nếp gấp , được cố định bởi các liên kết hydro giữa những axit amin gần nhau. Các protein sợi như keratin, collagen[có trong lôn, tóc, móng, sừng] gồm nhiều xoắn , trong khi các protein cầu có nhiều nếp gấp hơn.

Cấu trúc bậc ba: Các xoắn và phiến nếp gấp có thể cuôn lại với nhau thành từng búi có hình dạng lập thể đặc trưng cho từng loại protein. Cấu trúc không gian này có vai trò quyết định đối với hoạt tính và chức năng của protein. Cấu trúc này lại đặc biệt phụ thuộc vào nhóm R trong các mạch polypeptide. Chẳng hạn nhóm R của cysteine có khả năng tạo cầu disunfur [-S-S], nhóm R của proline cản trở việc hình thành xoắn, từ đó vị trí của chúng sẽ xác định điểm gấp hay, hay những nhóm R ưa nước thì nằm phía ngoài phân tử, còn các nhóm kị nước thì chuôi vào bên trong phân tửCác liên kết yếu hơn như liên kết hydro hay điện hóa trị có ở giữa các nhóm R có điện tích trái dấu.

Cấu trúc bậc bốn: Khi protein có nhiều chuỗi polypeptide phối hợp với nhau thì tạo nên cấu trúc bậc bốn của protein. Các chuỗi polypeptide liên kết với nhau nhờ các liên kết yếu như liên kết hydro.

Tính chất Lý Hóa của protein



Tính chất hóa lý của protein

Tính chất hóa lý của protein bao gồm: tính tan trong dung môi, tính hydrat hóa, tính điện ly, kết tủa, biến tính, tạo nhũ, tạo bọt v.v Có rất nhiều tính chất khác nhau của protein, hãy cùng tìm hiểu những tính chất này phía dưới đây nhé.

Tính tan của protein

Các loại protein khác nhau có khả năng hòa tan dễ dàng trong một số loại dung môi nhất định, chẳng hạn như albunmin dễ tan trong nước, globulin dễ tan trong muối loãng, prolamin tan trong ethanol, glutelin chỉ tan trong dung dịch kiềm hoặc acid loãng v.v

Tính hydrat hóa của protein

Phần lớn thực phẩm là những hệ rắn hydrat hóa. Các đặc tính hóa lý, lưu biến của protein và các thành phần khác của thực phẩm phụ thuộc không chỉ riêng vào sự có mặt của nước mà còn phụ thuộc vào hoạt tính của nước. Ngoài ra, các chế phẩm protein concentrate và isolate dạng khô trước khi sử dụng phải được hydrat hóa. Do đó, các tính chất hydrat hóa và tái hydrat hóa của protein thực phẩm có ý nghĩa thực tiễn to lớn.

Hydrat hóa protein ở trạng thái khô có thể được phân chia thành các gian đoạn liên tiếp như sau:



Quá trình hydrat hóa một protein ở dạng khô

Hấp thụ nước [còn gọi là cố định nước], trương nở, thấm ướt, khả năng giữ nước, tính dính, dẻo liên quan đến 4 giai đoạn đầu; khả năng phân tán, độ nhớt, độ đặc của protein liên quan đến giai đoạn 5. Trạng thái cuối cùng của protein tan hoặc không tan [một phần hay hoàn toàn] có liên quan đến các tính chất chức năng quan trọng như tính tan hoặc tính tan tức thời [giai đoạn 5 xảy ra nhanh]. Tính tạo gel liên quan đến sự tạo thành khối không tan hydrat hóa tốt, nhưng các phản ứng protein protein đóng vai trò chính. Cuối cùng, các tính chất bề mặt như nhũ tương hóa và tạo bọt cũng cần protein có khả năng hydrat hóa và phân tán cao hơn các đặc tính khác.

Trong quá trình hydrat hóa, protein tương tác với nước qua các nối peptide hoặc các gốc R ở mạch bên nhớ liên kết hydro.

Các yếu tố môi trường ảnh hưởng đến tính chất hydrat hóa

Nồng độ protein, pH, nhiệt độ, thời gian, lực ion, sự có mặt của các thành phần khác là những yếu tố ảnh hưởng đến các phản ứng protein protein và protein nước. Các tính chất chức năng được xác định trong điều kiện cân bằng của các lực này.

Lượng nước hấp thụ tổng số tăng khi tăng nồng độ protein. pH thay đổi dẫn đến thay đổi mức độ ion hóa và sự tích điện trên bề mặt các phân tử protein, làm thay đổi lực hút và đẩy giữa các phân tử này và khả năng liên kết với nước. tại điểm đẳng điện pI, phản ứng protein protein là cực đại, các phân tử protein liên kết với nhau, co lại và khả năng hydrat hóa và trương nở là cực tiểu.

Nói chung khả năng giữ nước của protein giảm khi nhiệt độ tăng do làm giảm các liên kết hydro. Biến tính và tập hợp [ ] khi đun nóng làm giảm bề mặt phân tử protein và các nhóm phân cực có khả năng cố định nước. Tuy nhiên, đối với một số ngoại lệ, khi đun nóng trong nước protein có cấu trúc chặt chẽ cao, sự phân ly và duỗi ra của các phân tử có thể làm lộ ra trên bề mặt các liên kết peptide và mạch ngoại phân cực mà trước đó bị che dấu, kết quả là làm tăng khả năng cố định nước.

Bản chất và nồng độ các ion gây ảnh hưởng đến lực ion trong môi trường và sự phân bố điện tích trên bề mặt phân tử protein nên cũng ảnh hưởng đến khả năng hydrat hóa. Người ta nhận thấy có sự cạnh tranh phản ứng [liên kết] giữa nước, muối và các nhóm ngoại của acid amin. Khi nồng độ muối [như NaCl] thấp, tính hydrat hóa của protein có thể tăng do sự đính thêm các io giúp mở rộng mạng lưới protein. Tuy nhiên, khi nồng độ muối cao, các phản ứng muối nước trở nên trội hơn, làm giảm liên kết protein nước và protein bị sấy khô.

Sự hấp thụ và giữ nước của protein có ảnh hưởng đến tính chất và kết cấu của nhiều thực phẩm như bánh mì, thịt băm

Khả năng hóa tan của protein

Thực phẩm ở trạng thái lỏng và giàu protein đòi hỏi protein phải có độ hòa tan cao. Độ hòa tan cao là một chỉ số rất quan trọng đối với protein được sử dụng trong đồ uống. Ngoài ra, người ta còn muốn protein có thể tan được ở những giá trị pH khác nhau và bền với nhiệt độ.

Độ hòa tan của protein ở pH trung tính và pH đẳng điện là tính chất chức năng đầu tiên được đo đạc ở các giai đoạn chế biến và chuyển hóa protein. Người ta thường sử dụng chỉ số Nitơ hòa tan [Nitrogen Solubility Index NSI] để xác định đạc tính này. Biết được độ hòa tan của protein rất có ích cho các quá trình công nghệ như trích ly, tinh chế, tủa phân đoạn protein cũng như định hướng sử dụng các loại protein.Protein của lactoserum hòa tan tốt ở khoảng pH và lực ion rộng. Ngược lại, độ hòa tan của caseinate phụ thuộc nhiều vào pH, lực ion [và nồng độ Ca2+], nhưng ít phụ thuộc vào nhiệt độ như protein của lactoserum và protein đậu nành.

Tính tan của phần lớn protein bị giảm mạnh và không thuận nghịch trong quá trình đun nóng. Tuy nhiên, trong chế biến thực phẩm, đun nóng luôn là cần thiết với các mục đích diệt vi sinh vật, giảm mùi khó chịu, tách bớt nướcNgay cả trường hợp đun nóng nhẹ [sử dụng khi trích ly và làm sạch các chế phẩm protein] cũng gây nên sự biến tính nhất định và làm giảm độ hòa tan.

Không phải tất cả protein có độ hòa tan ban đầu tốt sẽ luôn có các tính chất chức năng khác tốt. Có trường hợp khả năng hấp thụ nước của protein được cải thiện khi làm biến tính ở một mức độ nào đó. Đôi khi, khả năng tạo gel vẫn giữ được sau khi biến tính và không hòa tan một phần protein. Tương ứng với điều đó, việc tạo thành nhũ tương, hệ bọt và gel có thể liên quan tới các mức độ làm duỗi mạch, tập hợp và không hòa tan protein khác nhau. Ngược lại, protein của lactoserum caseinate và một vài protein khác cần có độ hòa tan ban đầu đủ lớn nếu muốn chuyển hóa nó thành dạng gel, hệ bọt hay hệ nhũ tương tốt.

Độ nhớt của dung dịch protein

Khi protein hòa tan trong dung dịch, mỗi loại dung dịch của những protein khác nhau có độ nhớt khác nhau. Người ta có thể lợi dụng tính chất này để xác định khối lượng phân tử protein [độ nhớt càng cao thì khối lượng phân tử càng cao].

ProteinNồng độ %

[trong nước]

Độ nhớt tương đối

[của nước bằng 1]

Gelatin3,04,54
Albumin trứng3,01,20
Gelatin3,014,2
Albumin trứng8,01,57
Độ nhớt của một số loại protein

Hằng số điện môi của dung dịch protein

Khi thêm các dung môi hữu cơ trung tính như ethanol, aceton vào dung dịch protein trong nước thì độ tan của protein giảm tới mức kết tủa do giảm mức độ hydrat hóa của các nhóm ion hóa protein, lớp áo mất nước, các phân tử protein kết hợp với nhau thành tủa. Như vậy hằng số điện môi làm ngăn cản lực tĩnh điện giữa các nhóm tích điện của protein và nước.

Tính chất điện ly của protein

Ở môi trường có pH pH¬i phân tử protein thể hiện tính acid, cho ion H+, do đó số điện tích âm lớn hơn số điện tích dương, protein là một đa ion, tích điện âm.

See more: Tổng Hợp Các Món Ăn Làm Từ Bột Nếp Cực Thơm Ngon, Bột Nếp Làm Bánh Gì

ProteinpHiProteinpHi
Pepsin1,0Globulin sữa5,2
Albumin trứng4,6Hemoglobin6,8
Casein4,7Ribonuclease7,8
Albunmin huyết thanh4,9Tripsin10.5
Gelatin4,9Prolamin12.0

Giá trị pHi của một số proetein

Trong môi trường pH=pHi , protein dễ dàng kết tụ lại với nhau vì thế người ta lợi dụng tính chất này để xác định pHi của protein cũng như để kết tủa protein. Mặt khác do sự sai khác nhau về pHi giữa các protein khác nhau, có thể điều chỉnh pH của môi trường để tách riêng các protein ra khỏi hỗn hợp của chúng.

Sự kết muối của dung dịch protein

Muối trung tính có ảnh hưởng rõ tới độ hòa tan của protein hình cầu: với nồng độ thấp chúng làm hòa tan nhiều protein. Tác dụng đó không phụ thuộc vào bản chất của muối trung tính, mà phụ thuộc vào nồng độ các muối và số điện tích của mỗi ion trong dung dịch, tức là phụ thuộc vào lực ion của dung dịch [ trong đó là kí hiệu của tổng, C1 là nồng độ của mỗi ion, Z1 là điện tích của mỗi ion]. Các muối có ion hóa trị II [MgCl2, MgSO¬¬4] làm tang đáng kể độ tan của protein hơn các muối ion có hóa trị I [NaCl, NH4Cl, KCl] . Khi tăng đáng kể nồng độ muối trung tính thì độ tan của protein bắt đầu giảm van ở nồng độ muối rất cao, protein có thể bị tủa hoàn toàn.

Các protein khác nhau tủa ở những nồng độ muối trung tính khác nhau. Người ta sử dụng tính chất này để chiết xuất và tách riêng từng phần protein ra khỏi hỗn hợp. Đó là phương pháp diêm tích [kết tủa protein bằng muối]. Thí dụ dùng muối ammonium sulfate 50% bão hòa kết tủa globulin và dung dịch ammonium sulfate bão hòa để kết tủa albumin từ huyết thanh.

Biểu hiện quang học của protein

Cũng như nhiều chất hóa học khác , protein có khả năng hấp thụ và bức xạ ánh sáng dưới dạng lượng tử . Vì vậy có thể đo cường độ hấp thụ của protein trong dung dịch hay còn gọi là mật độ quang thường kí hiệu bằng chữ OD [Optical Density]. Dựa trên tính chất đó người ta đã sản xuất ra các loại máy quang phổ hấp thụ để phân tích protein. Nhìn chung, protein đều có khả năng hấp thụ ánh sáng trong vùng khả kiến [từ 350nm-800nm] và vùng tử ngoại [từ 320nm xuống tới 180nm].

Trong vùng ánh sáng khả kiến protein kết hợp với thuốc thử hấp thụ mạnh nhất ở vùng ánh sáng đỏ 750nm [định lượng protein theo Lowry].

Đối với vùng tử ngoại dung dịch protein có khả năng hấp thụ ánh sáng tử ngoại ở hai vùng bước sóng khác nhau: 180nm-220nm và 250nm-300nm].

Ở bước sóng từ 180nm-220nm đó là vùng hấp thụ của liên kết peptide trong protein, cực đại hấp thụ ở 190nm. Do liên kết peptide có nhiều trong phân tử protein nên độ hấp thụ khá cao, cho phép định lượng tất cả các loại protein với nồng độ thấp. Tuy nhiên vùng hấp thụ này của các liên kết peptide trong protein có thể bị dịch về phía có bước sóng dài hơn khi có một số tạp chất lẫn trong dung dịch protein. Mặt khác chính các tạp chất này cũng hấp thụ ánh sáng tử ngoại ở vùng bước sóng 180nm-220nm. Vì thế trong thực tế thường đo độ hấp thụ của dung dịch protein ở bước sóng 220nm-240nm.

Ở bước sóng từ 250nm-300nm là vùng hấp thụ các amino acid thơm [Phe, Tyr, Trp] có trong phân tử protein hấp thụ cực đại ở 280nm. Có thể sử dụng phương pháp đo độ hấp thụ của dung dịch protein ở bước sóng 280nm để định tính và định lượng các protein có chứa các amino acid thơm. Hàm lượng các amino acid thơm trong các protein khác nhau thay đổi khá nhiều, do đó dung dịch của các protein khác nhau có nồng độ giống nhau có thể khác nhau về độ hấp thụ ở bước sóng 280nm. Và được đánh giá bằng hệ số tắt, ví dụ: hệ số tắt của albumin huyết thanh bò băng 6,7 khi cho ánh sáng có bước sóng 280nm đi qua 1cm dung dịch có nồng độ 10mg/ml; trong khi hệ số tắt của kháng thể IgG bằng 13,6. Ngoài ra có nhiều chất khác trong dung dịch cũng có ảnh hưởng đến độ hấp thụ protein. Vì vậy các phương pháp đo độ ấp thụ ở vùng ánh sáng tử ngoại thường được dùng để định lượng protein đã được tinh sạch hoặc để xác định protein trong các phân đoạn nhận được khi sắc ký tách các protein qua cột.

Kết tủa thuận nghịch và không thuận nghịch của protein

Khi protein bị kết tủa đơn thuần bằng dung dịch muối trung tính có nồng độ khác nhau hoặc bằng alcohol, aceton ở nhiệt độ thấp thì protein vẫn giữ nguyên được mọi tính chất của nó kể cả tính chất sinh học và có thể hòa tan trở lại gọi là kết tủa thuận nghịch. Các yếu tố kết tủa thuận nghịch được dùng để thu nhận chế phẩm protein. Trong quá trình kết tủa thuận nghịch muối trung tính vừa làm trung hòa điện vừa loại bỏ lớp vỏ hydrat hóa của protein, còn dung môi hữu cơ háo nước phá hủy lớp vỏ hydrate nhanh chóng. Trong chế phẩm protein nhận được còn lẫn các chất đã dùng để kết tủa, cần sử dụng phương pháp thích hợp để loại bỏ các chất này. Ví dụ có thể dùng phương pháp thẩm tích để loại bỏ muối.

Ngược lại kết tủa không thuận nghịch là phân tử protein sau khi bị kết tủa không thể phục hồi lại trạng thái ban đầu. Sự kết tủa này thường được sử dụng để loại bỏ protein ra khỏi dung dịch, làm ngưng phản ứng của enzyme. Một trong những yếu tố gây kết tủa không thuận nghịch đơn giản nhất là đun sôi dung dịch protein [sẽ nói kỹ hơn trong phần biến tính protein ở phần sau].

Biến tính protein

Sau khi protein bị kết tủa , nếu loại bỏ các yếu tố gây kết tủa mà protein vẫn mất khả năng tạo thành dung dịch keo bền như trước và mất những tích chất ban đầu , chẳng hạn độ hòa tan giảm, tính chất sinh học bị mất gọi là sự biến tính protein. Vì vậy, đối với việc bảo quản protein, người ta thường để dung dịch protein ở nhiệt độ thấp thường là từ .

Song ở nhiệt độ này dung dịch protein dần dần cũng bị biến tính , biến tính càng nhanh khi dung dịch protein càng loãng. Sự biến tính ở nhiệt độ thấp của dung dịch protein loãng được gọi là sự biến tính bề mặt: protein bị biến tính tạo nên một lớp mỏng trên bề mặt dung dịch, phần dưới lớp mỏng là những nhóm ưa nước nằm trong dung dịch, phần trên lớp mỏng là những gốc kị nước của amino acid kết hợp với nhau bởi lực Van der Waals.

Ở dung dịch đặc các phân tử protein kết hợp với nhau chặt chẽ hơn do đó làm giảm bớt và hạn chế sự biến tính bề mặt. Để bảo quản tốt các chế phẩm protein như enzyme, hormon, -globulin kháng độc tố v..vngười ta tiến hành làm đông khô [làm bốc hơi nước của dung dịch protein ở áp suất và nhiệt độ thấp], bột thu được có thể bảo quản được ngay cả ở nhiệt độ phòng thí nghiệm trong các ống hàn kín.

Khả năng tạo nhũ của protein

Nhiều sản phẩm thực phẩm là hệ nhũ tương như sữa bò, sữa đậu nành, kem, nước cốt dừa, bơ, phomai nóng chảy, mayonnaise, xúc xích thịt cávà những thành phần protein thường đóng vai trò nổi bật trong việc làm bền các hệ này.

Protein được hấp thụ ở bề mặt phân chia giữa các giọt dầu phân tán và pha nước liên tục có các tính chất vật lý và lưu biến [làm đặc, tạo độ nhớt, cứng dẻo] có tác dụng ngăn cản các giọt chất béo hợp nhất. Tùy theo pH, ion hóa các gốc R của các acid amin trong mạch polypeptide cũng tạo ra các lực đẩy tĩnh điện, góp phần làm bền hệ nhũ tương.

Nói chung, protein ít có khả năng làm bền hệ nhũ tương nước/dầu. Nguyên nhân có thể do phần lớn protein có bản chất ưa nước và do đó chúng bị hấp thụ ở pha nước gần bề mặt phân chia.

Các tính chất tạo bọt của protein

Các hệ bọt thực phẩm gồm các bọt khí phân tán trong pha liên tục là lỏng hoặc bán rắn có chất hoạt động bề mặt hòa tan.

Có rất nhiều loại thực phẩm có dạng bọt như bánh xốp, kem, bọt của biaTrong nhiều trường hợp, khí tạo bọt là không khí, một số khác là CO2 còn pha liên tục là một dung dịch hoặc huyền phù nước có chứa protein. Một số hệ bọt thực phẩm là những hệ keo phức tạp.

Ví dụ, kem là một hệ nhũ tương [hoặc huyền phù] của các giọt chất béo, một huyền phù của các tinh thể đá phân tán, một gel polysaccharide, một dung dịch đường nồng độ cao, dung dịch protein và các bọt khí.

Khả năng cố định mùi của protein

Trong chế biến thực phẩm, kể cả các chế phẩm protein có nhiều trường hợp cần phải tẩy mùi để hạn chế hoặc tách các mùi khó chịu. Các hợp chất như andehyde, ketone, rượu, phenol, acid béo đã bị oxi hóa có thể cho mùi ôi, khét, mùi ngái và cho vị đắng, the, caykhi chúng liên kết với protein và các thành phần khác của thực phẩm. Các chất này chỉ được tách ra khi đun nóng hoặc nhai. Một số liên kết rất chặt chẽ, khó tách ngay cả khi trích ly bằng hơi nước hoặc dung môi.

See more: Cách Hack Nick Facebook Chỉ 5 Phút Tỉ Lệ Thành Công Cao, Hack Tìm Vị Trí Số Điện Thoại Của Người Khác

Bên cạnh vấn đề tách các mùi khó chịu, người ta còn sử dụng khả năng này của protein để mang đến cho thực phẩm các mùi dễ chịu [ví dụ, mang mùi thơm của thịt đến cho các protein thực vật đã được tạo kết cấu]. Điều này thật là lý tưởng nếu các thành phần dễ bay hơi của những mùi dễ chịu có thể liên kết bền vững với thực phẩm, không bị tổn thất trong quá trình chế biến và bảo quản, nhưng lại được giải phóng nhanh trong miệng khi sử dụng thực phẩm và không bị biến đổi.

Video liên quan

Chủ Đề