Allium cepa extract là gì

1. Suleria H. A. R., Butt M. S., Anjum F. M., Saeed F., Khalid N. Onion: nature protection against physiological threats. Critical Reviews in Food Science and Nutrition . 2015;55[1]:50–66. doi: 10.1080/10408398.2011.646364. [PubMed] [CrossRef] [Google Scholar]

2. Teshika J. D., Zakariyyah A. M., Zaynab T., et al. Traditional and modern uses of onion bulb [Allium cepaL.]: a systematic review. Critical Reviews in Food Science and Nutrition . 2019;59[sup1]:S39–S70. doi: 10.1080/10408398.2018.1499074. [PubMed] [CrossRef] [Google Scholar]

3. Foo C. W., Tristani-Firouzi P. Topical modalities for treatment and prevention of postsurgical hypertrophic scars. Facial Plastic Surgery Clinics of North America . 2011;19[3]:551–557. doi: 10.1016/j.fsc.2011.06.008. [PubMed] [CrossRef] [Google Scholar]

4. Marefati N., Ghorani V., Shakeri F., et al. A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents. Pharmaceutical Biology . 2021;59[1]:287–302. doi: 10.1080/13880209.2021.1874028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Chakraborty A. J., Mitra S., Tallei T. E. Bromelain a potential bioactive compound: a comprehensive overview from a pharmacological perspective. Life . 2021;11[4] doi: 10.3390/life11040317. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Mitra S., Rauf A., Tareq A. M. Potential health benefits of carotenoid lutein: an updated review. Food and Chemical Toxicology . 2021;154 [PubMed] [Google Scholar]

7. Bahbah E. I., Ghozy S., Attia M. S. Molecular mechanisms of astaxanthin as a potential neurotherapeutic agent. Marine Drugs . 2021;19[4] doi: 10.3390/md19040201. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Rauf A., Olatunde A., Imran M., et al. Honokiol: a review of its pharmacological potential and therapeutic insights. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology . 2021;90 doi: 10.1016/j.phymed.2021.153647.153647 [PubMed] [CrossRef] [Google Scholar]

9. Saroj P., Verma M., Jha K. K., Pal M. An overview on immunomodulation. Journal of Advanced Scientific Research . 2012;3[1]:7–12. [Google Scholar]

10. Amado L. L., Garcia M. L., Ramos P. B. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. The Science of the Total Environment . 2009;407[6]:2115–2123. [PubMed] [Google Scholar]

11. Tang X., Xia Z., Yu J. An experimental study of hemolysis induced by onion [Allium cepa] poisoning in dogs. Journal of Veterinary Pharmacology and Therapeutics . 2008;31[2]:143–149. doi: 10.1111/j.1365-2885.2007.00930.x. [PubMed] [CrossRef] [Google Scholar]

12. Marrelli M., Amodeo V., Statti G., Conforti F. Biological properties and bioactive components of Allium cepa L.: focus on potential benefits in the treatment of obesity and related comorbidities. Molecules . 2019;24[1]:p. 119. [PMC free article] [PubMed] [Google Scholar]

13. Sampath Kumar K. P., Bhowmik D., Tiwari P. Allium cepa: a traditional medicinal herb and its health benefits. Journal of Chemical and Pharmaceutical Research . 2010;2[21]:283–291. [Google Scholar]

14. Prakash D., Singh B. N., Upadhyay G. Antioxidant and free radical scavenging activities of phenols from onion [Allium cepa] Food Chemistry . 2007;102[4]:1389–1393. doi: 10.1016/j.foodchem.2006.06.063. [CrossRef] [Google Scholar]

15. Huma Z. E., Vian M. A., Fabiano-Tixier A.-S., Elmaataoui M., Dangles O., Chemat F. A remarkable influence of microwave extraction: enhancement of antioxidant activity of extracted onion varieties. Food Chemistry . 2011;127[4]:1472–1480. doi: 10.1016/j.foodchem.2011.01.112. [CrossRef] [Google Scholar]

16. Zhang S.-l., Deng P., Xu Y.-c., Lü S.-w., Wang J.-j. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors. Journal of Integrative Agriculture . 2016;15[9]:2175–2181. doi: 10.1016/s2095-3119[16]61385-0. [CrossRef] [Google Scholar]

17. Pérez-Gregorio R. M., García-Falcón M. S., Simal-Gándara J., Rodrigues A. S., Almeida D. P. F. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. Journal of Food Composition and Analysis . 2010;23[6]:592–598. [Google Scholar]

18. Peter C . H. H., Arts C . W. Flavonols, flavones and flavanols—nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture . 2000;80:1081–1093. [Google Scholar]

19. Fossen T., Andersen Ø. M. Anthocyanins from red onion, Allium cepa, with novel aglycone. Phytochemistry . 2003;62[8]:1217–1220. doi: 10.1016/s0031-9422[02]00746-x. [PubMed] [CrossRef] [Google Scholar]

20. Fredotovíc Ž., Šprung M., Soldo B. Chemical composition and biological activity of allium cepa L. and Allium × cornutum [Clementi ex Visiani 1842] methanolic extracts. Molecules . 2017;22[3] [PMC free article] [PubMed] [Google Scholar]

21. Vazquez-Armenta F. J., Ayala-Zavala J. F., Olivas G. I., Molina-Corral F. J., Silva-Espinoza B. A. Antibrowning and antimicrobial effects of onion essential oil to preserve the quality of cut potatoes. Acta Alimentaria . 2014;43[4]:640–649. doi: 10.1556/aalim.43.2014.4.14. [CrossRef] [Google Scholar]

22. Imai S., Tsuge N., Tomotake M., et al. An onion enzyme that makes the eyes water. Nature . 2002;419[6908] doi: 10.1038/419685a.685 [PubMed] [CrossRef] [Google Scholar]

23. Thomas D. J., Parkin K. L. Quantification of Alk[en]yl-l-cysteine Sulfoxides and Related Amino Acids in Alliums by High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry . 1994;42[8]:1632–1638. doi: 10.1021/jf00044a010. [CrossRef] [Google Scholar]

24. Griffiths G., Trueman L., Crowther T., Thomas B., Smith B. Onions - a global benefit to health. Phytotherapy Research . 2002;16[7]:603–615. [PubMed] [Google Scholar]

25. Liguori L., Califano R., Albanese D. Chemical composition and antioxidant properties of five white onion [Allium cepa L.] landraces. Journal of Food Quality . 2017;2017 doi: 10.1155/2017/6873651. [CrossRef] [Google Scholar]

26. Wang H. X., Ng T. B. Isolation of allicepin, a novel antifungal peptide from onion [Allium cepa] bulbs. Journal of Peptide Science . 2004;10[3]:173–177. doi: 10.1002/psc.509. [PubMed] [CrossRef] [Google Scholar]

27. Borjihan B., Ogita A., Fujita K.-i., Doe M., Tanaka T. The cyclic organosulfur compound zwiebelane a from onion [Allium cepa] functions as an enhancer of polymyxin B in fungal vacuole disruption. Planta Medica . 2010;76[16]:1864–1866. doi: 10.1055/s-0030-1249935. [PubMed] [CrossRef] [Google Scholar]

28. Vågen I. M., Slimestad R. Amount of characteristic compounds in 15 cultivars of onion [Allium cepa L.] in controlled field trials. Journal of the Science of Food and Agriculture . 2008;88[3]:404–411. [Google Scholar]

29. Rose P., Whiteman M., Moore P. K., Zhu Y. Z. Bioactive S-alk[en]yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Natural Product Reports . 2005;22[3]:351–368. doi: 10.1039/b417639c. [PubMed] [CrossRef] [Google Scholar]

30. Munday R., Munday C. M. Induction of phase II enzymes by aliphatic sulfides derived from garlic and onions: an overview. Methods in Enzymology . 2004;382:449–456. doi: 10.1016/s0076-6879[04]82024-x. [PubMed] [CrossRef] [Google Scholar]

31. Munday R., Munday C. M. Relative activities of organosulfur compounds derived from onions and garlic in increasing tissue activities of quinone reductase and glutathione transferase in rat tissues. Nutrition and Cancer . 2001;40[2]:205–210. doi: 10.1207/s15327914nc402_18. [PubMed] [CrossRef] [Google Scholar]

32. Yamazaki Y., Iwasaki K., Mikami M., Yagihashi A. Distribution of eleven flavor precursors, S-Alk[en]yl-L-cysteine derivatives, in seven allium vegetables. Food Science and Technology Research . 2011;17[1]:55–62. [Google Scholar]

33. Lanzoti V. The analysis of onion and garlic. Journal of Chromatography A . 2006;1112[1–2]:3–22. [PubMed] [Google Scholar]

34. Corea G., Fattorusso E., Lanzotti V., Capasso R., Izzo A. A. Antispasmodic saponins from bulbs of red onion, Allium cepa L. var. Tropea. Journal of Agricultural and Food Chemistry . 2005;53[4]:935–940. doi: 10.1021/jf048404o. [PubMed] [CrossRef] [Google Scholar]

35. Xiao H., Parkin K. L. Isolation and identification of potential cancer chemopreventive agents from methanolic extracts of green onion [Allium cepa] Phytochemistry . 2007;68[7]:1059–1067. doi: 10.1016/j.phytochem.2007.01.021. [PubMed] [CrossRef] [Google Scholar]

36. Yuan L., Ji T. F., Wang A. G., Yang J. B., Su Y. L. Two new furostanol saponins from the seeds of Allium cepa L. Chinese Chemical Letters . 2008;19[4]:461–464. doi: 10.1016/j.cclet.2008.02.005. [CrossRef] [Google Scholar]

37. Wetli H. A., Brenneisen R., Tschudi I. Gamma-glutamyl-peptide isolated from onion by bioassay guided fractionation inhibits resorption activity of osteoclasts. Journal of Bone and Mineral Research . 2004;19:p. S314. [Google Scholar]

38. Langos M., Hofstetter W., Dolder S. A gamma-glutamyl peptide from onion inhibits the development and activity of osteoclasts in vitro. Planta Medica . 2007;73[09] doi: 10.1055/s-2007-987238. [CrossRef] [Google Scholar]

39. Benkeblia N. Antimicrobial activity of essential oil extracts of various onions [Allium cepa] and garlic [Allium sativum] Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology . 2004;37[2]:263–268. doi: 10.1016/j.lwt.2003.09.001. [CrossRef] [Google Scholar]

40. Kahane R., Vialle-Guérin E., Boukema I., et al. Changes in non-structural carbohydrate composition during bulbing in sweet and high-solid onions in field experiments. Environmental and Experimental Botany . 2001;45[1]:73–83. doi: 10.1016/s0098-8472[00]00082-4. [PubMed] [CrossRef] [Google Scholar]

41. Jaime L., Martinez F., Martin-Cabrejas M. A., et al. Study of total fructan and fructooligosaccharide content in different onion tissues. Journal of the Science of Food and Agriculture . 2001;81[2]:177–182. doi: 10.1002/1097-0010[20010115]81:23.0.co;2-9. [CrossRef] [Google Scholar]

42. Jaime L., Martín-Cabrejas M. A., Mollá E., López-Andréu F. J., Esteban R. M. Effect of storage on fructan and fructooligosaccharide of onion [Allium cepa L.] Journal of Agricultural and Food Chemistry . 2001;49[2]:982–988. doi: 10.1021/jf000921t. [PubMed] [CrossRef] [Google Scholar]

43. Jaime L., Mollá E., Fernández A., Martín-Cabrejas M. A., López-Andréu F. J., Esteban R. M. Structural carbohydrate differences and potential source of dietary fiber of onion [Allium cepa L.] tissues. Journal of Agricultural and Food Chemistry . 2002;50[1]:122–128. doi: 10.1021/jf010797t. [PubMed] [CrossRef] [Google Scholar]

44. Santas J., Almajano M. P., Carbó R. Antimicrobial and antioxidant activity of crude onion [Allium cepa, L.] extracts. International Journal of Food Science and Technology . 2010;45[2]:403–409. doi: 10.1111/j.1365-2621.2009.02169.x. [CrossRef] [Google Scholar]

45. Sharma K., Mahato N., Lee Y. R. Systematic study on active compounds as antibacterial and antibiofilm agent in aging onions. Journal of Food and Drug Analysis . 2018;26[2]:518–528. doi: 10.1016/j.jfda.2017.06.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Azu N., Onyeagba R., Nworie O., Kalu J. Antibacterial activity of Allium cepa [onions] and Zingiber officinale [ginger] on Staphylococcus aureus and Pseudomonas aeruginosa isolated from high vaginal swab. The Internet Journal of Tropical Medicine . 2006;3[2]:1–7. [Google Scholar]

47. Lekshmi P. Antibacterial activity of nanoparticles from Allium sp Antibacterial activity of nanoparticles from Allium sp. Journal of Microbiology and Biotechnology Research . 2015;2:115–119. [Google Scholar]

48. Saxena A., Tripathi R. M., Singh R. P. Biological synthesis of silver nanoparticles by using onion [Allium cepa] extract and their antibacterial activity. Digest Journal of Nanomaterials and Biostructures . 2010;5[2]:427–432. [Google Scholar]

49. Zohri A.-N., Abdel-Gawad K., Saber S. Antibacterial, antidermatophytic and antitoxigenic activities of onion [Allium cepa L.] oil. Microbiological Research . 1995;150[2]:167–172. doi: 10.1016/s0944-5013[11]80052-2. [PubMed] [CrossRef] [Google Scholar]

50. Irkin R., Korukluoglu M. Control of some filamentous fungi and yeasts by dehydrated Allium extracts. Journal für Verbraucherschutz und Lebensmittelsicherheit . 2009;4[1]:3–6. doi: 10.1007/s00003-009-0390-8. [CrossRef] [Google Scholar]

51. Irkin R., Korukluoglu M. Control of Aspergillus Niger with garlic, onion and leek extracts. African Journal of Biotechnology . 2007;6[4]:384–387. [Google Scholar]

52. Lanzotti V., Romano A., Lanzuise S., Bonanomi G., Scala F. Antifungal saponins from bulbs of white onion, Allium cepa L. Phytochemistry . 2012;74:133–139. doi: 10.1016/j.phytochem.2011.11.008. [PubMed] [CrossRef] [Google Scholar]

53. Shams-Ghahfarokhi M., Shokoohamiri M.-R., Amirrajab N., et al. In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia . 2006;77[4]:321–323. doi: 10.1016/j.fitote.2006.03.014. [PubMed] [CrossRef] [Google Scholar]

54. Kivanç M. Antimicrobial activity of fresh plant juice on the growth of bacteria and yeasts. Journal of Qafqaz University . 1997;1[1]:27–35. [Google Scholar]

55. Kocic-Tanackov S., Dimic G., Tepic A., Vujicic B. Influence of Allium ampeloprasum L. and Allium cepa L. essential oils on the growth of some yeasts and moulds. Zbornik Matice srpske za prirodne nauke . 2009;116[116]:121–130. doi: 10.2298/zmspn0916121k. [CrossRef] [Google Scholar]

56. ur Rahman S., Khan S., Chand N., Sadique U., Khan R. U. In vivo effects of Allium cepa L. on the selected gut microflora and intestinal histomorphology in broiler. Acta Histochemica . 2017;119[5]:446–450. doi: 10.1016/j.acthis.2017.04.004. [PubMed] [CrossRef] [Google Scholar]

57. Goodarzi M., Nanekarani S., Landy N. Effect of dietary supplementation with onion [Allium cepa L.] on performance, carcass traits and intestinal microflora composition in broiler chickens. Asian Pacific Journal of Tropical Disease . 2014;4[S1] doi: 10.1016/s2222-1808[14]60459-x. [CrossRef] [Google Scholar]

58. Bag A., Chattopadhyay R. R. Evaluation of synergistic antibacterial and antioxidant efficacy of essential oils of spices and herbs in combination. PLoS One . 2015;10[7] doi: 10.1371/journal.pone.0131321. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Singh B. K., Singramau R. H. S. P. G. C. Assessment of antifungal activity of onion [allium cepa L.] bulb extracts. International Education And Research Journal . 2017;3[9] [Google Scholar]

60. Thampi N., Jeyadoss V. S. In vitro time-kill and antiradical assays on green onion and garlic against specific diarrheagenic pathogens. The Scitech Journal . 2015;02[03]:28–38. [Google Scholar]

61. Shakurfow F. A., Buazzi M. M., Gamal M. A. 2015;1[2] Assessment of antimicrobial activity of onion [Allium cepa] and garlic [Allium Sativum] extracts on Listeria monocytogenes; in vitro study. [Google Scholar]

62. Wensing M., Ludt S., Campbell S., van Lieshout J, Volbracht E, Grol R. European Practice Assessment of Cardiovascular risk management [EPA Cardio]: protocol of an international observational study in primary care. Implementation Science: Iscus . 2009;4[1]:1–8. doi: 10.1186/1748-5908-4-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Block E., Purcell P. F., Yolen S. R. Onions and heartburn. American Journal of Gastroenterology . 1992;87[5]:679–680. [PubMed] [Google Scholar]

64. Majewska-Wierzbicka M., Czeczot H. [Flavonoids in the prevention and treatment of cardiovascular diseases] Polski merkuriusz lekarski . 2012;32[187]:50–54. [PubMed] [Google Scholar]

65. Jain S., Buttar H. S., Chintameneni M., Kaur G. Prevention of cardiovascular diseases with anti-inflammatory and anti- oxidant nutraceuticals and herbal products: an overview of pre-clinical and clinical studies. Recent Patents on Inflammation & Allergy Drug Discovery . 2018;12[2]:145–157. doi: 10.2174/1872213x12666180815144803. [PubMed] [CrossRef] [Google Scholar]

66. Toh J. Y., Tan V. M., Lim P. C., Lim S. T., Chong M. F. Flavonoids from fruit and vegetables: a focus on cardiovascular risk factors. Current Atherosclerosis Reports . 2013;15[12]:368. doi: 10.1007/s11883-013-0368-y. [PubMed] [CrossRef] [Google Scholar]

67. Alpsoy S., Aktas C., Uygur R., et al. Antioxidant and anti-apoptotic effects of onion [Allium cepa] extract on doxorubicin-induced cardiotoxicity in rats. Journal of Applied Toxicology . 2013;33[3]:202–208. doi: 10.1002/jat.1738. [PubMed] [CrossRef] [Google Scholar]

68. TsongMing L., HuiFang C., YouCheng S. Hypocholesterolemic efficacy of quercetin rich onion juice in healthy mild hypercholesterolemic adults: a pilot study. Plant Foods for Human Nutrition . 2015;70[4]:395–400. [PubMed] [Google Scholar]

69. Shenoy C., Patil M. B., Kumar R., Patil S. Preliminary phytochemical investigation and wound healing activity of Allium cepa linn [Liliaceae] International Journal of Pharmacy and Pharmaceutical Sciences . 2009;2:167–175. [Google Scholar]

70. Wananukul S., Chatpreodprai S., Peongsujarit D., Lertsapcharoen P. A prospective placebo-controlled study on the efficacy of onion extract in silicone derivative gel for the prevention of hypertrophic scar and keloid in median sternotomy wound in pediatric patients. Journal of the Medical Association of Thailand = Chotmaihet thangphaet . 2013;96[11]:1428–1433. [PubMed] [Google Scholar]

71. Perez O. A., Viera M. H., Patel J. K., et al. A comparative study evaluating the tolerability and efficacy of two topical therapies for the treatment of keloids and hypertrophic scars. Journal of Drugs in Dermatology: Journal of Drugs in Dermatology . 2010;9[5]:514–518. [PubMed] [Google Scholar]

72. Pikuła M., Żebrowska M. E., Pobłocka-Olech L., Krauze-Baranowska M., Sznitowska M., Trzonkowski P. Effect of enoxaparin and onion extract on human skin fibroblast cell line - therapeutic implications for the treatment of keloids. Pharmaceutical Biology . 2014;52[2]:262–267. doi: 10.3109/13880209.2013.826246. [PubMed] [CrossRef] [Google Scholar]

73. Zurada J. M., Kriegel D., Davis I. C. Topical treatments for hypertrophic scars. Journal of the American Academy of Dermatology . 2006;55[6]:1024–1031. doi: 10.1016/j.jaad.2006.03.022. [PubMed] [CrossRef] [Google Scholar]

74. Gangopadhyay K. S., Khan M., Pandit S., Chakrabarti S., Mondal T. K., Biswas T. K. Pharmacological evaluation and chemical standardization of an ayurvedic formulation for wound healing activity. The International Journal of Lower Extremity Wounds . 2014;13[1]:41–49. doi: 10.1177/1534734614520705. [PubMed] [CrossRef] [Google Scholar]

75. Shockman S., Paghdal K. V., Cohen G. Medical and surgical management of keloids: a review. Journal of Drugs in Dermatology: Journal of Drugs in Dermatology . 2010;9[10]:1249–1257. [PubMed] [Google Scholar]

76. Tianna C., Andrea S., Lucia S. Effect of allium cepa‐allantoin‐pentaglycan gel on skin hypertrophic scars: clinical and video‐capillaroscopic results of an open‐label, controlled, nonrandomized clinical trial. Dermatologic Surgery . 2010;36[9]:1439–1444. [PubMed] [Google Scholar]

77. Draelos Z. D. The ability of onion extract gel to improve the cosmetic appearance of postsurgical scars. Journal of Cosmetic Dermatology . 2008;7[2]:101–104. doi: 10.1111/j.1473-2165.2008.00371.x. [PubMed] [CrossRef] [Google Scholar]

78. Wai S. H., Shun Y. Y., Pik C. C., Chan H. H. Use of onion extract, heparin, allantoin gel in prevention of scarring in Chinese patients having laser removal of tattoos: a prospective randomized controlled trial. Dermatologic Surgery . 2006;32[7]:891–896. [PubMed] [Google Scholar]

79. Khadzhiiski O., Diakov R., Petrova M. Contractubex used in the treatment of postburn scars and keloids. Khirurgiia . 2001;57[3–4]:44–48. [PubMed] [Google Scholar]

80. Stozkowska W., Janicki S., Jaśkowski J., Kasprzak A., Kondrat W. Technology and preliminary evaluation of ointments that increase the elasticity of post-burn scars. Wiadomosci Lekarskie . 1984;37[22]:1770–2176. [PubMed] [Google Scholar]

81. Saulis A. S., Mogford J. H., Mustoe T. A., Tredget E. E., Anzarut A. Effect of Mederma on hypertrophic scarring in the rabbit ear model. Plastic and Reconstructive Surgery . 2002;110[1]:177–186. doi: 10.1097/00006534-200207000-00029. [PubMed] [CrossRef] [Google Scholar]

82. Campanati A., Ceccarelli G., Brisigotti V. Effects of in vivo application of an overnight patch containing Allium cepa, allantoin, and pentaglycan on hypertrophic scars and keloids: clinical, videocapillaroscopic, and ultrasonographic study. Dermatologic Therapy . 2021;34[1] doi: 10.1111/dth.14665. [PubMed] [CrossRef] [Google Scholar]

83. Dwivedi S., Amrita Medicinal plants with antiplatelet activity. Indian Drugs . 1993;30[11]:539–548. [Google Scholar]

84. Bordia T., Mohammed N., Thomson M., Ali M. An evaluation of garlic and onion as antithrombotic agents. Prostaglandins, Leukotrienes and Essential Fatty Acids . 1996;54[3]:183–186. doi: 10.1016/s0952-3278[96]90014-9. [PubMed] [CrossRef] [Google Scholar]

85. Block E., Gulati H., Putman D., Sha D., You N., Zhao S.-H. Allium Chemistry: synthesis of 1-[Alk[en]ylsulfinyl]propyl Alk[en]yl Disulfides [Cepaenes], Antithrombotic Flavorants from Homogenates of Onion [Allium cepa] Journal of Agricultural and Food Chemistry . 1997;45[11]:4414–4422. doi: 10.1021/jf9705126. [CrossRef] [Google Scholar]

86. Rahman K., Lowe G. M. Garlic and cardiovascular disease: a critical review. Journal of Nutrition . 2006;136[3]:736S–740S. doi: 10.1093/jn/136.3.736S. [PubMed] [CrossRef] [Google Scholar]

87. Ko E. Y., Nile S. H., Jung Y. S., Keum Y. S. Antioxidant and antiplatelet potential of different methanol fractions and flavonols extracted from onion [Allium cepa L.] 3 Biotech . 2018;8[3] doi: 10.1007/s13205-018-1184-4.155 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Hausman D. M. What is cancer? Perspectives in Biology and Medicine . 2019;62[4]:778–784. doi: 10.1353/pbm.2019.0046. [PubMed] [CrossRef] [Google Scholar]

89. Maranhão R. C., Vital C. G., Tavoni T. M., Graziani S. R. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents. Expert Opinion on Drug Delivery . 2017;14[10]:1217–1226. doi: 10.1080/17425247.2017.1276560. [PubMed] [CrossRef] [Google Scholar]

90. Hu T., Li Z., Gao C.-Y., Cho C. H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World Journal of Gastroenterology . 2016;22[30]:6876–6889. doi: 10.3748/wjg.v22.i30.6876. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Zamri N., Hamid H. A. Comparative study of onion [Allium cepa] and leek [allium ampeloprasum]: identification of organosulphur compounds by UPLC-QTOF/MS and anticancer effect on MCF-7 cells. Plant Foods for Human Nutrition . 2019;74[4]:525–530. doi: 10.1007/s11130-019-00770-6. [PubMed] [CrossRef] [Google Scholar]

92. Asemani Y., Zamani N., Bayat M., Amirghofran Z. Allium vegetables for possible future of cancer treatment. Phytotherapy Research . 2019;33[12]:3019–3039. doi: 10.1002/ptr.6490. [PubMed] [CrossRef] [Google Scholar]

93. Pan Y., Zheng Y. M., Ho W. S. Effect of quercetin glucosides from allium extracts on hepG2, PC-3 AND HT-29 cancer cell lines. Oncology Letters . 2018;15[4]:4657–4661. doi: 10.3892/ol.2018.7893. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Lee W. S., Yi S. M., Yun J. W. Polyphenols isolated from Allium cepa L. Induces apoptosis by induction of p53 and suppression of bcl-2 through inhibiting PI3K/akt signaling pathway in AGS human cancer cells. European Journal of Cancer Prevention . 2014;19[1]:14–22. [PMC free article] [PubMed] [Google Scholar]

95. Nohara T., Fujiwara Y., El-Aasr M., et al. Antitumor allium sulfides. Chemical and Pharmaceutical Bulletin . 2017;65[3]:209–217. doi: 10.1248/cpb.c16-00844. [PubMed] [CrossRef] [Google Scholar]

96. Puccinelli M. T., Stan S. D. Dietary bioactive diallyl trisulfide in cancer prevention and treatment. International Journal of Molecular Sciences . 2017;18[8] doi: 10.3390/ijms18081645. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Vu N. K., Kim C. S., Ha M. T., et al. Antioxidant and antidiabetic activities of flavonoid derivatives from the outer skins of Allium cepa L. Journal of Agricultural and Food Chemistry . 2020;68[33]:8797–8811. doi: 10.1021/acs.jafc.0c02122. [PubMed] [CrossRef] [Google Scholar]

98. Sajid Hamid Akash M., Chen S. Spice plant Allium cepa: dietary supplement for treatment of type 2 diabetes mellitus. Nutrition . 2014;30[10]:1128–1137. [PubMed] [Google Scholar]

99. Sabiu S., Madende M., Ajao A. A.-n., Aladodo R. A., Nurain I. O., Ahmad J. B. The genus allium [amaryllidaceae: alloideae]: features, phytoconstituents, and mechanisms of antidiabetic potential of Allium cepa and allium sativum. Bioactive Food as Dietary Interventions for Diabetes . 2019:137–154. doi: 10.1016/b978-0-12-813822-9.00009-6. [CrossRef] [Google Scholar]

100. I Airaodion A., U Akaninyene I., O Ngwogu K., Ekenjoku J. A., C Ngwogu A. Hypolipidaemic and antidiabetic potency of Allium cepa [onions] bulb in alloxan-induced diabetic rats. Acta Scientific Nutritional Health . 2020;4[3]:01–08. doi: 10.31080/asnh.2020.04.0648. [CrossRef] [Google Scholar]

101. Ifeanyi O. S. The antidiabetic effects of the bioactive flavonoid [Kaempferol-3-O-?-D-6{P- coumaroyl} glucopyranoside] isolated from Allium cepa. Recent Patents on Anti-infective Drug Discovery . 2016;11[1]:44–52. doi: 10.2174/1574891x11666151105130233. [PubMed] [CrossRef] [Google Scholar]

102. Marrelli M., Amodeo V., Statti G., Conforti F. Biological properties and bioactive components of allium cepa L.: focus on potential benefits in the treatment of obesity and related comorbidities. Molecules . 2019;24[1] [PMC free article] [PubMed] [Google Scholar]

103. Gautam S., Pal S., Maurya R., Srivastava A. K. Ethanolic extract of Allium cepa stimulates glucose transporter typ 4-mediated glucose uptake by the activation of insulin signaling. Planta Medica . 2015;81[3]:208–214. doi: 10.1055/s-0034-1396201. [PubMed] [CrossRef] [Google Scholar]

104. Jini D., Sharmila S. Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Materials Today Proceedings . 2020;22:432–438. doi: 10.1016/j.matpr.2019.07.672. [CrossRef] [Google Scholar]

105. Adam S., Mohammad J. B., Ho J. H. Hypercholesterolaemia - practical information for non-specialists. Archives of Medical Science . 2018;14[1]:1–21. [PMC free article] [PubMed] [Google Scholar]

106. Li W., Yang C., Mei X. Effect of the polyphenol-rich extract from Allium cepa on hyperlipidemic sprague-dawley rats. Journal of Food Biochemistry . 2021;45[1] doi: 10.1111/jfbc.13565. [PubMed] [CrossRef] [Google Scholar]

107. Srinivasan K. Anti-cholelithogenic potential of dietary spices and their bioactives. Critical Reviews in Food Science and Nutrition . 2017;57[8]:1749–1758. doi: 10.1080/10408398.2014.1003783. [PubMed] [CrossRef] [Google Scholar]

108. Soto V. C., González R. E., Sance M. M., Galmarini C. R. Organosulfur and phenolic content of garlic [Allium sativumL.] and onion [Allium cepaL.] and its relationship with antioxidant activity. Acta Horticulturae . 2016;1143[1143]:277–290. doi: 10.17660/actahortic.2016.1143.39. [CrossRef] [Google Scholar]

109. Jakubczyk K., Dec K., Kałduńska J., Kawczuga D., Kochman J., Janda K. Reactive oxygen species - sources, functions, oxidative damage. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego . 2020;48[284]:124–127. [PubMed] [Google Scholar]

110. Di Meo S., Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxidative Medicine and Cellular Longevity . 2020;2020 [PMC free article] [PubMed] [Google Scholar]

111. Rani V., Deep G., Singh R. K., Palle K., Yadav U. C. S. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sciences . 2016;148:183–193. doi: 10.1016/j.lfs.2016.02.002. [PubMed] [CrossRef] [Google Scholar]

112. Neha K., Haider M. R., Pathak A., Yar M. S. Medicinal prospects of antioxidants: a review. European Journal of Medicinal Chemistry . 2019;178:687–704. doi: 10.1016/j.ejmech.2019.06.010. [PubMed] [CrossRef] [Google Scholar]

113. Pisoschi A. M., Aneta P. The role of antioxidants in the chemistry of oxidative stress: a review. European Journal of Medicinal Chemistry . 2015;97:55–74. [PubMed] [Google Scholar]

114. Athreya K., Xavier M. F. Antioxidants in the treatment of cancer. Nutrition and Cancer . 2017;69[8]:1099–1104. doi: 10.1080/01635581.2017.1362445. [PubMed] [CrossRef] [Google Scholar]

115. Lisanti A., Formica V., Ianni F., et al. Antioxidant activity of phenolic extracts from different cultivars of Italian onion [Allium cepa] and relative human immune cell proliferative induction. Pharmaceutical Biology . 2016;54[5]:799–806. doi: 10.3109/13880209.2015.1080733. [PubMed] [CrossRef] [Google Scholar]

116. González‐de‐peredo A. V., Vázquez‐espinosa M., Espada‐bellido E. Flavonol composition and antioxidant activity of onions [Allium cepa l.] based on the development of new analytical ultrasound‐assisted extraction methods. Antioxidants . 2021;10[2]:1–22. [PMC free article] [PubMed] [Google Scholar]

117. Xu D. P., Li Y., Meng X., et al. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. International Journal of Molecular Sciences . 2017;18[1] doi: 10.3390/ijms18010096. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Cherubim D. J., Martins C. V., Fariña L., Lucca R. A. Polyphenols as natural antioxidants in cosmetics applications. Journal of Cosmetic Dermatology . 2020;19[1]:33–37. doi: 10.1111/jocd.13093. [PubMed] [CrossRef] [Google Scholar]

119. Lee K. A., Kim K.-T., Kim H. J., et al. Antioxidant activities of onion [Allium cepa L.] peel extracts produced by ethanol, hot water, and subcritical water extraction. Food Science and Biotechnology . 2014;23[2]:615–621. doi: 10.1007/s10068-014-0084-6. [CrossRef] [Google Scholar]

120. Kim S., Kim D.-B., Jin W., et al. Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic [Allium sativum L.], elephant garlic [Allium ampeloprasum L.] and onion [Allium cepa L.] Natural Product Research . 2018;32[10]:1193–1197. doi: 10.1080/14786419.2017.1323211. [PubMed] [CrossRef] [Google Scholar]

121. Ma Y.-L., Zhu D.-Y., Thakur K., et al. Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion [Allium cepa L.] International Journal of Biological Macromolecules . 2018;111:92–101. doi: 10.1016/j.ijbiomac.2017.12.154. [PubMed] [CrossRef] [Google Scholar]

122. Omar A. E., Al-Khalaifah H. S., Mohamed W. A. M., et al. Effects of phenolic-rich onion [Allium cepa L.] extract on the growth performance, behavior, intestinal histology, amino acid digestibility, antioxidant activity, and the immune status of broiler chickens. Frontiers in veterinary science . 2020;7 doi: 10.3389/fvets.2020.582612.582612 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Blüher M. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology . 2019;15[5]:288–298. [PubMed] [Google Scholar]

124. Smith K. B., Smith M. S. Obesity statistics. Primary Care: Clinics in Office Practice . 2016;43[1]:121–135. doi: 10.1016/j.pop.2015.10.001. [PubMed] [CrossRef] [Google Scholar]

125. Stefan N., Birkenfeld A. L., Schulze M. B., Ludwig D. S. Obesity and impaired metabolic health in patients with COVID-19. Nature Reviews Endocrinology . 2020;16[7]:341–342. doi: 10.1038/s41574-020-0364-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Obesity.

127. Haase C. L., Eriksen K. T., Lopes S., Satylganova A., Schnecke V., McEwan P. Body mass index and risk of obesity-related conditions in a cohort of 2.9 million people: Evidence from a UK primary care database. Obesity Science & Practice . 2021;7[2]:137–147. [PMC free article] [PubMed] [Google Scholar]

128. Zhao Y., Chen B., Shen J., et al. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxidative Medicine and Cellular Longevity . 2017;2017 doi: 10.1155/2017/1459497.1459497 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Ting Y., Chang W.-T., Shiau D.-K., Chou P.-H., Wu M.-F., Hsu C.-L. Antiobesity efficacy of quercetin-rich supplement on diet-induced obese rats: effects on body composition, serum lipid profile, and gene expression. Journal of Agricultural and Food Chemistry . 2018;66[1]:70–80. doi: 10.1021/acs.jafc.7b03551. [PubMed] [CrossRef] [Google Scholar]

130. Yang C., Li L., Yang L., Lǚ H., Wang S., Sun G. Anti-obesity and Hypolipidemic effects of garlic oil and onion oil in rats fed a high-fat diet. Nutrition and Metabolism . 2018;15[1]:43. doi: 10.1186/s12986-018-0275-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Torres-Villarreal D., Camacho A., Castro H., Ortiz-Lopez R., de la Garza A. L. Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. Journal of Physiology & Biochemistry . 2019;75[1]:83–88. doi: 10.1007/s13105-018-0659-4. [PubMed] [CrossRef] [Google Scholar]

132. Lu M., Cao Y., Xiao J., Song M., Ho C.-T. Molecular mechanisms of the anti-obesity effect of bioactive ingredients in common spices: a review. Food & Function . 2018;9[9]:4569–4581. doi: 10.1039/c8fo01349g. [PubMed] [CrossRef] [Google Scholar]

133. Brüll V., Burak C., Stoffel-Wagner B., et al. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with [pre-]hypertension: a randomised double-blinded placebo-controlled cross-over trial. British Journal of Nutrition . 2015;114[8]:1263–1277. doi: 10.1017/S0007114515002950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Emamat H., Foroughi F., Eini-Zinab H., Hekmatdoost A. The effects of onion consumption on prevention of nonalcoholic fatty liver disease. Indian Journal of Clinical Biochemistry . 2018;33[1]:75–80. doi: 10.1007/s12291-017-0636-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Das R., Mitra S., Tareq A. M. Medicinal plants used against hepatic disorders in Bangladesh: a comprehensive review. Journal of Ethnopharmacology . 2021;282 [PubMed] [Google Scholar]

136. Emamat H., Foroughi F., Eini-Zinab H. The effects of onion consumption on treatment of metabolic, histologic, and inflammatory features of nonalcoholic fatty liver disease. Journal of Diabetes and Metabolic Disorders . 2016;15[1] doi: 10.1186/s40200-016-0248-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Krstin S., Sobeh M., Braun M., Wink M. Anti-parasitic activities of allium sativum and Allium cepa against trypanosoma b. brucei and Leishmania tarentolae. Medicine . 2018;5[2]:37. doi: 10.3390/medicines5020037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Huang T.-H., Mühlbauer R. C., Tang C.-H., et al. Onion decreases the ovariectomy-induced osteopenia in young adult rats. Bone . 2008;42[6]:1154–1163. doi: 10.1016/j.bone.2008.01.032. [PubMed] [CrossRef] [Google Scholar]

139. Matheson E. M., Mainous A. G., Carnemolla M. A. The association between onion consumption and bone density in perimenopausal and postmenopausal non-Hispanic white women 50 years and older. Menopause . 2009;16[4]:756–759. doi: 10.1097/gme.0b013e31819581a5. [PubMed] [CrossRef] [Google Scholar]

140. Tang C.-H., Huang T.-H., Chang C.-S., Fu W.-M., Yang R.-S. Water solution of onion crude powder inhibits RANKL-induced osteoclastogenesis through ERK, p38 and NF-κB pathways. Osteoporosis International . 2009;20[1]:93–103. doi: 10.1007/s00198-008-0630-2. [PubMed] [CrossRef] [Google Scholar]

141. Law Y.-Y., Chiu H.-F., Lee H.-H., Shen Y.-C., Venkatakrishnan K., Wang C.-K. Consumption of onion juice modulates oxidative stress and attenuates the risk of bone disorders in middle-aged and post-menopausal healthy subjects. Food & Function . 2016;7[2]:902–912. doi: 10.1039/c5fo01251a. [PubMed] [CrossRef] [Google Scholar]

142. Sakakibara H., Yoshino S., Kawai Y., Terao J. Antidepressant-like effect of onion [allium cepaL.] powder in a rat behavioral model of depression. Bioscience Biotechnology and Biochemistry . 2008;72[1]:94–100. doi: 10.1271/bbb.70454. [PubMed] [CrossRef] [Google Scholar]

143. Islam M. N., Rauf A., Fahad F. I. Superoxide dismutase: an updated review on its health benefits and industrial applications. Critical Reviews in Food Science and Nutrition . 2021 doi: 10.1080/10408398.2021.1913400. [PubMed] [CrossRef] [Google Scholar]

144. Samad N., Saleem A. Administration of Allium cepa L. bulb attenuates stress-produced anxiety and depression and improves memory in male mice. Metabolic Brain Disease . 2018;33[1]:271–281. doi: 10.1007/s11011-017-0159-1. [PubMed] [CrossRef] [Google Scholar]

145. Chakraborty A. J., Mitra S., Tallei T. E., et al. Bromelain a potential bioactive compound: a comprehensive overview from a pharmacological perspective. Life . 2021;11[4] doi: 10.3390/life11040317.317 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Rahaman M. M., Rakib A., Mitra S. The genus curcuma and inflammation: overview of the pharmacological perspectives. Plants . 2021;10[1]:1–19. [PMC free article] [PubMed] [Google Scholar]

147. Kim H. P., Mani I., Iversen L., Ziboh V. A. Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from Guinea-pigs. Prostaglandins, Leukotrienes and Essential Fatty Acids . 1998;58[1]:17–24. doi: 10.1016/s0952-3278[98]90125-9. [PubMed] [CrossRef] [Google Scholar]

148. Cumella J. C., Faden H., Middleton F. Selective activity of plant flavonoids on neutrophil chemiluminescence [CL] The Journal of Allergy and Clinical Immunology . 1987;79[1]157 [Google Scholar]

149. Shaik Y. B., Castellani M. L., Perrella A., et al. Role of quercetin [a natural herbal compound] in allergy and inflammation. Journal of Biological Regulators and Homeostatic Agents . 2006;20[3–4]:47–52. [PubMed] [Google Scholar]

150. Park J. B. Effects of typheramide and alfrutamide found in Allium species on cyclooxygenases and lipoxygenases. Journal of Medicinal Food . 2011;14[3]:226–231. doi: 10.1089/jmf.2009.0198. [PubMed] [CrossRef] [Google Scholar]

151. Takahashi M., Shibamoto T. Chemical compositions and antioxidant/anti-inflammatory activities of steam distillate from freeze-dried onion [Allium cepa L.] sprout. Journal of Agricultural and Food Chemistry . 2008;56[22]:10462–10467. doi: 10.1021/jf801220b. [PubMed] [CrossRef] [Google Scholar]

152. Naseri M. K., Arabian M., Badavi M., Ahangarpour A. Vasorelaxant and hypotensive effects of Allium cepa peel hydroalcoholic extract in rat. Pakistan Journal of Biological Sciences: PJBS . 2008;11[12]:1569–1575. doi: 10.3923/pjbs.2008.1569.1575. [PubMed] [CrossRef] [Google Scholar]

153. Dirsch V. M., Vollmar A. M. Ajoene, a natural product with non-steroidal anti-inflammatory drug [NSAID]-like properties? Biochemical Pharmacology . 2001;61[5]:587–593. doi: 10.1016/s0006-2952[00]00580-3. [PubMed] [CrossRef] [Google Scholar]

154. Dawud F. A., Dubo A. B., Yusuf N. W., Umar I. A. Effects of aqueous extract of Allium cepa [red onion] on ovalbumininduced allergic asthma in wistar rats. Bayero Journal of Pure and Applied Sciences . 2016;9[2]:95. doi: 10.4314/bajopas.v9i2.19. [CrossRef] [Google Scholar]

155. Jakaria M., Azam S., Cho D. Y., Haque M. E., Kim I. S., Choi D. K. The methanol extract of Allium cepa L. Protects inflammatory markers in LPS-induced BV-2 microglial cells and upregulates the antiapoptotic gene and antioxidant enzymes in N27-A cells. Antioxidants . 2019;8[9] doi: 10.3390/antiox8090348. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Ghorani V., Marefati N., Shakeri F., Rezaee R., Boskabady M., Boskabady M. H. The effects of allium cepa extract on tracheal responsiveness, lung inflammatory cells and phospholipase A2 level in asthmatic rats. Iranian Journal of Allergy, Asthma, and Immunology . 2018;17[3]:221–231. [PubMed] [Google Scholar]

157. Vazhappilly C. G., Ansari S. A., Al-Jaleeli R., et al. Role of flavonoids in thrombotic, cardiovascular, and inflammatory diseases. Inflammopharmacology . 2019;27[5]:863–869. doi: 10.1007/s10787-019-00612-6. [PubMed] [CrossRef] [Google Scholar]

158. Rezaei Golestani M., Rad M., Afkhami Goli A. Analysis and evaluation of antibacterial effects of new herbal formulas, AP-001 and AP-002, against Escherichia coli O157:H7. Life Sciences . 2015;135:22–26. [PubMed] [Google Scholar]

159. Ro J.-Y., Ryu J.-H., Park H.-J., Cho H.-J. Onion [Allium cepa L.] peel extract has anti-platelet effects in rat platelets. SpringerPlus . 2015;4[1]:17. doi: 10.1186/s40064-015-0786-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Beretta H. V., Bannoud F., Insani M., et al. Relationships between bioactive compound content and the antiplatelet and antioxidant activities of six Allium vegetable species. Food Technology and Biotechnology . 2017;55[2]:266–275. doi: 10.17113/ftb.55.02.17.4722. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Singh T., Goel R. K. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity. Neurotoxicology . 2015;49:1–7. doi: 10.1016/j.neuro.2015.04.007. [PubMed] [CrossRef] [Google Scholar]

162. Kumar S., Modgil S., Bammidi S., et al. Allium cepa exerts neuroprotective effect on retinal ganglion cells of pterygopalatine artery [PPA] ligated mice. Journal of Ayurveda and Integrative Medicine . 2020;11[4]:489–494. doi: 10.1016/j.jaim.2019.08.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Oliveira T. T., Campos K. M., Cerqueira-Lima A. T., et al. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. Daru Journal of Pharmaceutical Sciences: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences . 2015;23:18. doi: 10.1186/s40199-015-0098-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Oliveira T., Figueiredo C. A., Brito C. Allium cepa L. and quercetin inhibit RANKL/porphyromonas gingivalis LPS-induced osteoclastogenesis by downregulating NF- B signaling pathway. Evidence-based Complement Alternative Medicine . 2015;2015 [PMC free article] [PubMed] [Google Scholar] Retracted

165. Evidence Based Complementary and Alternative Medicine. Retracted: Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-B Signaling Pathway. Evidence-based Complement Alternative Medicine . 2019;2019 doi: 10.1155/2019/7906103.7906103 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Parisa K. K., Sayeh B. Study OF allium cepa effect to inhibit the growth OF tumor cells IN BALB/C mice breast cancer model. Journal Of Sabzevar University Of Medical Sciences . 2018;25[2]:63–71. [Google Scholar]

167. Seo M. Y., Kim K. R., Lee J. J. Therapeutic effect of topical administration of red onion extract in a murine model of allergic rhinitis. 2019. pp. 9–17. [PMC free article] [PubMed] [CrossRef]

168. Prasanna V. K., Venkatesh Y. P. Characterization of onion lectin [Allium cepa agglutinin] as an immunomodulatory protein inducing Th1-type immune response in vitro. International Immunopharmacology . 2015;26:1–10. doi: 10.1016/j.intimp.2015.04.009. [PubMed] [CrossRef] [Google Scholar]

169. Marefati N., Eftekhar N., Kaveh M., Boskabadi J., Beheshti F., Boskabady M. H. The effect of Allium cepa extract on lung oxidant, antioxidant, and immunological biomarkers in ovalbumin-sensitized rats. Medical Principles and Practice . 2018;27[2]:122–128. doi: 10.1159/000487885. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Vajda F. J. E. Neuroprotection and neurodegenerative disease. Journal of Clinical Neuroscience . 2002;9[1]:4–8. doi: 10.1054/jocn.2001.1027. [PubMed] [CrossRef] [Google Scholar]

171. Park I.-K., Shin S.-C. Fumigant activity of plant essential oils and components from garlic [allium sativum] and clove bud [eugenia caryophyllata] oils against the Japanese termite [reticulitermes speratus kolbe] Journal of Agricultural and Food Chemistry . 2005;53[11]:4388–4392. doi: 10.1021/jf050393r. [PubMed] [CrossRef] [Google Scholar]

172. Park I.-K., Kim L.-S., Choi I.-H., Lee Y.-S., Shin S.-C. Fumigant activity of plant essential oils and components from Schizonepeta tenuifolia against Lycoriella ingenua [Diptera: sciaridae] Journal of Economic Entomology . 2006;99[5]:1717–1721. doi: 10.1093/jee/99.5.1717. [PubMed] [CrossRef] [Google Scholar]

173. Mann R. S., Rouseff R. L., Smoot J. M., Castle W. S., Stelinski L. L. Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama [Hemiptera: Psyllidae], response to citrus volatiles. Bulletin of Entomological Research . 2011;101[1]:89–97. doi: 10.1017/s0007485310000222. [PubMed] [CrossRef] [Google Scholar]

174. Sharaby A., Abdel-Rahman H., Moawad S. Biological effects of some natural and chemical compounds on the potato tuber moth, Phthorimaea operculella Zell. [Lepidoptera:Gelechiidae] Saudi Journal of Biological Sciences . 2009;16[1]:1–9. doi: 10.1016/j.sjbs.2009.07.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Upadhyay R. K. Nutraceutical, pharmaceutical and therapeutic uses of Allium cepa: a review. International Journal of Green Pharmacy . 2016;10[1]:S46–S64. [Google Scholar]

176. Mishra K. P., Ganju L., Sairam M., Banerjee P. K., Sawhney R. C. A review of high throughput technology for the screening of natural products. Biomedicine & Pharmacotherapy . 2008;62[2]:94–98. doi: 10.1016/j.biopha.2007.06.012. [PubMed] [CrossRef] [Google Scholar]

177. Wu F., Chen Y., Li G., Zhu D., Wang L., Wang J. Zinc oxide nanoparticles synthesized from Allium cepa prevents UVB radiation mediated inflammation in human epidermal keratinocytes [HaCaT cells] Artificial Cells, Nanomedicine, and Biotechnology . 2019;47[1]:3548–3558. doi: 10.1080/21691401.2019.1642905. [PubMed] [CrossRef] [Google Scholar]

178. Ahn N., Kang B., Kim K. Anti-Inflammatory Effect of Ethanol Extract from Onion [Allium cepa L.] Peel on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears. Journal of the Korean Society of Food Science and Nutrition . 2015;44[11]:1612–1620. [Google Scholar]

179. Kumar V. P., Venkatesh Y. P. Alleviation of cyclophosphamide-induced immunosuppression in Wistar rats by onion lectin [Allium cepa agglutinin] Journal of Ethnopharmacology . 2016;186:280–288. doi: 10.1016/j.jep.2016.04.006. [PubMed] [CrossRef] [Google Scholar]

180. Kumar V. P., Prashanth K. V. H., Venkatesh Y. P. Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion [Allium cepa] Carbohydrate Polymers . 2015;117:115–122. doi: 10.1016/j.carbpol.2014.09.039. [PubMed] [CrossRef] [Google Scholar]

181. Lisanti A., Formica V., Ianni F. Antioxidant activity of phenolic extracts from different cultivars of Italian onion [Allium cepa] and relative human immune cell proliferative induction. Pharmaceutical Biology . 2016;0209 doi: 10.3109/13880209.2015.1080733. [PubMed] [CrossRef] [Google Scholar]

182. Mitra S., Prova S. R., Sultana S. A. Therapeutic potential of indole alkaloids in respiratory diseases: a comprehensive review. Phytomedicine . 2021;90 [PubMed] [Google Scholar]

183. Kaveh M., Eidi A., Nemati A., Boskabady M. H. The Extract of Portulaca Oleracea and its Constituent, Alpha Linolenic Acid Affects Serum Oxidant Levels and Inflammatory Cells in Sensitized Rats. Iranian Journal of Allergy, Asthma and Immunology . 2017;16[3]:256–270. [PubMed] [Google Scholar]

184. Rogerio A. P., Kanashiro A., Fontanari C., et al. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflammation Research . 2007;56[10]:402–408. doi: 10.1007/s00011-007-7005-6. [PubMed] [CrossRef] [Google Scholar]

185. Singh B. N., Singh B. R., Singh R. L., et al. Polyphenolics from various extracts/fractions of red onion [Allium cepa] peel with potent antioxidant and antimutagenic activities. Food and Chemical Toxicology . 2009;47[6]:1161–1167. doi: 10.1016/j.fct.2009.02.004. [PubMed] [CrossRef] [Google Scholar]

186. Hudson G. J., John P. M. V., Bailey B. S., Southgate D. A. T. The automated determination of carbohydrate. Development of a method for available carbohydrates and its application to foodstuffs. Journal of the Science of Food and Agriculture . 1976;27[7]:681–687. doi: 10.1002/jsfa.2740270715. [PubMed] [CrossRef] [Google Scholar]

187. Obioha U. E., Suru S. M., Ola-Mudathir K. F., Faremi T. Y. Hepatoprotective potentials of onion and garlic extracts on cadmium-induced oxidative damage in rats. Biological Trace Element Research . 2009;129[1–3]:143–156. doi: 10.1007/s12011-008-8276-7. [PubMed] [CrossRef] [Google Scholar]

188. Sidhu J. S., Ali M., Al-Rashdan A., Ahmed N. Onion [Allium cepa L.] is potentially a good source of important antioxidants. Journal of Food Science & Technology . 2019;56[4]:1811–1819. doi: 10.1007/s13197-019-03625-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Kabrah A. 2015. The Antibacterial Activity of Onion on MSSA and MRSA Isolates of Staphylococcus aureus ProQuest Dissertation & Theses.

190. Jaradat N. A., Ayesh O. I., Anderson C. Ethnopharmacological survey about medicinal plants utilized by herbalists and traditional practitioner healers for treatments of diarrhea in the West Bank/Palestine. Journal of Ethnopharmacology . 2016;182:57–66. doi: 10.1016/j.jep.2016.02.013. [PubMed] [CrossRef] [Google Scholar]

191. Kılıç M., Yıldız K., Kılıç F. M. Traditional uses of medicinal plants in artuklu, Turkey. Human Ecology . 2020;48[5]:619–632. [Google Scholar]

192. Teshika J. D., Zakariyyah A. M., Zaynab T., et al. Traditional and modern uses of onion bulb [Allium cepa L.]: a systematic review. Critical Reviews in Food Science and Nutrition . 2019;59[sup1]:S39–S70. [PubMed] [Google Scholar]

193. Trindade G. S., Capella M. A. M., Capella L. S., Affonso-Mitidieri O. R., Rumjanek V. M. Differences in sensitivity to UVC, UVB and UVA radiation of a multidrug-resistant cell line overexpressing P-glycoprotein. Photochemistry and Photobiology . 1999;69[6]:694–699. doi: 10.1111/j.1751-1097.1999.tb03348.x. [PubMed] [CrossRef] [Google Scholar]

194. Lankoff A., Banasik A., Obe G., et al. Effect of microcystin-LR and cyanobacterial extract from Polish reservoir of drinking water on cell cycle progression, mitotic spindle, and apoptosis in CHO-K1 cells. Toxicology and Applied Pharmacology . 2003;189[3]:204–213. doi: 10.1016/s0041-008x[03]00094-2. [PubMed] [CrossRef] [Google Scholar]

Page 2

An overview of recent in vivo and in vitro studies of Allium cepa based on its therapeutic efficacy.

Field of StudySubjectDosageOutcomeMechanism of ActionReferences
Antimicrobial effect [in vivo]Broiler chicks1.5–2.5 gPopulation of E. coli in ileum was decreased at a rate of 2.5 g/kg feed, while the amount of Lactobacillus was increasedOnion may alter a microflora intestinal, which improves digestion and absorption of nutrients in the intestines[56]
Antimicrobial effect [in vitro] Escherichia coli bacterial strainsPowdered bulb onionThe strain tested had MIC = 93.8 ± 44.2 µg/mL and MBC = 312.5 ± 265 µg/mL showing that A. cepa had antibacterial effect to a certain extentDestroys bacteria by using their most active extract forms, or combining them to achieve latent synergistic effects[158]
Food-borne bacterial strains15.6–1000 μg/mLAll bacteria projected inhibition zone, but a greater inhibitory effect was observed for S. aureus [IZD = 6.90 ± 1.26]n.m.[58]
Gram-positive and Gram-negative bacterian.m.Methanolic extract of onion inhibits E. coli and S. aureus.Flavonoids, phenolic compounds, quercetin inhibited the growth of Gram positive and Gram-negative bacteria[45]
Gastrointestinal tract pathogensn.m.100% aqueous extracts of green onion bulbs displayed maximum bacterial kill, and its kill rate is slightly higher than the kill rate by positive control for E. aerogenesFlavonoids and phenolic compounds of green onion bulb destroy bacterial membrane and shows antibacterial activity[60]
Antiplatelet activity [in vivo]Sprague Dawley rats6 µg/mLSignificant inhibition of aggregation of plateletsFlavones such as apigenin, chrysin, and phloretin inhibited aggregation of platelets[87]
Rats5 μg/mLPlatelet aggregation was inhibitedInhibition of aggregation-inducing molecules, thromboxane A2 [TXA2], and intracellular Ca2+ by blocking TXA2 synthase [TXAS] and cyclooxygenase-1 [COX-1] activities[159]
Antiplatelet activity [in vitro]Two healthy nonsmoker donorsn.m.The dose-response curves developed using different dosages of allium juice vs. the percentage of inhibition of aggregation are calculated for juice levels needed to reduce platelet aggregation by 50% [IC50]Aglycone part did not take part in inhibiting platelet aggregation. The flavone part of flavonoids of A. cepa played the major role[160]
Gallstone treatment [in vivo]Sprague Dawley rats7% [w/w] onion powderLowered ballooning, hepatic steatosis, and lobular inflammationQuercetin decreases the levels of hepatic enzymes, serum lipids, steatosis, and inflammation through regulating the expressions of NF-kB, p65, Sirt1, and iNOS[134]
Antiparasitic activity [in vitro] Leishmania tarentolae and Trypanosoma brucei brucei3–5 µg/mLZwiebelane in the onion extract killed both types of parasites efficientlyThe forming of disulfide bonds between SH classes of essential redox compounds and secondary metabolites containing sulfur are inhibiting trypanothion reductases[137]
Antidepressant activity [in vivo]Albino Wistar mice200 mg/kg/dayImmobilization stress substantially reducedReduce stress by its potential antioxidant mechanism[144]
Anti-inflammatory [in vivo]Wistar rats35–140 mg/kg/dayReduced the pulmonary inflammatory cells, such as eosinophil, neutrophil, and monocyte and overall WBCInhibited NF-κB cells which induce inflammation[156]
BV-2 microglial cells50–500 mg/mLAttenuated neuroinflammationOnion increases iNOS expression at the protein levels and mRNA in LPS-stimulated BV-2 microglial cells, thus reducing proinflammatory cytokines IL-1-b, TNF-a, and IL-6[155]
Wistar rats150 and 300 mg/kgReduced lymphocyte and eosinophil count in the blood and bronchoalveolar lavage fluid [BALF]n.m.[154]
Inflammatory responses [in vitro]RAW 264.7 cells100 mg/mLLPS-induced inflammationDose-dependent reduction in IL-6, TNF-a, and IL-1-b secretion, as well as NO production[4]
Neuroprotective activity [In vivo]Swiss albino male mice200 mg/kg/dayReduced lipid peroxidation and nitrate/nitrite ratios, as well as increased GSH and catalase activities. The amount of AChE in the body was also decreased.Quercetin, kaempferol, cycloartenol, phytosterols like lophenol, 24-ethyl cycloartenol, and 24-methyl lophenol have been found to inhibit transcription of genes like FAS, S14, transferrin, apolipoprotein CIII[161]
Mice300 mg/kgProtects mice from neuronal harm in I/R induced retinal injury.Changes the expression of neurotrophic factor[162]
Ashthma [in vivo]Blomia tropicalis [a type of mite]100–1000 mg/kgInduced asthmaReduced IL-4, IL-5, IL-13, and IgE levels[163]
Inhibitory and stimulatory activity [in vivo]Mice10–200 gInhibitory effect on Th2 activity and stimulatory effect on Th1Th2 cytokines, IL-4, IL-5, and IL-13, as well as IgE, were inhibited at 1000 µg/mL[164]
Osteoclastogenesis [in vitro]RAW264.7 cells100–1000 μg/mLInduced inflammatory conditionsCepa inhibited the development of IL-6 and IL-1a while increasing the production of IL-3 and IL-4 and inhibiting the NF- κB pathway[165]
In breast cancer [in vivo]Female BALB/c mice0.1 mL/100 g bwStimulatory effects on Th1 but inhibitory effects on Th2 activityInduced decreases in IL-4 and rises in IFN-c levels and IFN-c/IL4 ratio [Th1/Th2 balance][166]
Allergic rhinitis [In vivo]BALB/c mice20–40 mLDecreased allergic symptoms, Reduced eosinophil penetration of nasal turbinate mucosa, and OVA-specific IgE levelsLevels of IL-4, IL-5, IL-10, IL-13, and IFN-c decreased in groups treated with onion extract[167]
Immunomodulatory property [in vitro]BALB/c mice3.5–15 μg/mLShowed immunomodulatory propertiesInhibited the development of Th2 cytokines such as IL-4, IL-5, IL-13, and IgE[164]
Immunoprotective effects [in vivo]Wistar rats1–100 intraperitonealNatural and cyclophosphamide-induced immunosuppressionTNF-a, IL-10, COX-2, IgG and IgA levels in serum were increased by and immune parameters such as myeloid cells [RBC, WBC, and hb], body weight, splenic index, and thymic index in the spleen and thymus were enhanced[168]
Lung disorder [in vivo]Wistar rats0.175–0.7 mg/mLWBC count were improved, but their lymphocytes were reduced [p < 0.05 to p < 0.001].A significant decrease in tracheal tolerance, neutrophil and eosinophil counts, but a significant increase in lymphocyte count [p < 0.05 to p < 0.001][169]
Hepatoprotective [in vivo]Adult male albino rats200–450 mg/kgDecreased alanine aminotransferase and overall serum bilirubin levels in a dose-dependent wayDecrease in alanine levels. Paracetamol hepatotoxic rats' aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [ALP], lactate dehydrogenase [LDH], and complete serum bilirubin [TSB].[23]
Anti-cancer effect [in vitro]Murine ovarian cancer model20 mg/kgBlocks tumor cell growthBlocks the activation of M2 macrophages[95]
Antidiabetic effect [in vivo]Diabetic ratsAqueous extract of onions [25 mg/kg] for 21 daysReduced blood glucose levelIncreased glucose uptake into soleus muscle[101]
Rats200 mg/kgDecrease in blood glucose levelStimulate the formation of pancreatic β cells[102]
Rats3 mL/100 gDecrease in blood glucose leveln.m.[100]
Antihypercholesterolemic effect [in vivo]Sprague Dawley rats4.5 g/kg body weightInhibited the formation of atherosclerosisn.m.[106]
Mice2% raw or heat processed onions with high cholesterol dietReduced the risk of CGSDecrease cholesterol secretion in bile and increase bile acid excretion[107]
Antioxidant effects [in vivo]Broiler chicken3 g/kg dietIncreased antioxidant enzyme activitiesn.m.[122]
Antiobesity effects [in vivo]Rats92.6 mg/kg bw/daysWeight gain reduced significantly compared to the rats who were only fed high fat dietn.m.[130]

Video liên quan

Chủ Đề